2 METHODIK

2.1 Illitkristallinität (IK)

2.1.1 Definition der Illitkristallinität (IK)

Ursprünglich prägten GRIM et al. (1937) den Begriff "Illit" für sehr feinkörnige, glimmerähnliche Minerale. GRIM (1953) präzisierte den Term weiter: Illite sind Minerale, die im wesentlichen Ton-Korngröße aufweisen und eine c-Periodizität von ungefähr 10 Å zeigen. Mittlerweile können daraus einige Varietäten unterschieden werden. In der Regel werden aber die verschiedenen "Illit"-Phasen in den Proben für die IK-Untersuchungen nicht exakt identifiziert. Zu den Illiten werden auch Glimmer mit phengitischen oder quellfähigen Komponenten gezählt (siehe auch SRODON, 1984 und SRODON & EBERL, 1984). Der Begriff "Kristallinität" wurde von KÜBLER (1967a) als ein Synonym für den Ordnungsgrad in einem Kristallgitter bezeichnet. Was jedoch unter Ordnung zu verstehen ist, wurde nicht genauer beschrieben. Neuere Untersuchungen (FLEHMIG, 1973; LEE et al., 1985; MERRIMAN et al., 1990; NIETO & SANCHEZ-NAVAS, 1994; ARKAI et al., 1997 und JIANG et al., 1997) zeigten, daß die Illitkristallinität, ausgedrückt als Peakbreite der (001)-Interferenz der Röntgendiffraktogramme, im wesentlichen eine Funktion der Größe der kohärent beugenden Gitterbereiche (= Kristallite / Kristalldomänen) und der in diesen auftretenden Dislokationen ist. WEAVER (1960) zeigte als erster, daß der mit Hilfe des Röntgendiffraktometers bestimmte Kristallisationsgrad der Illite dazu geeignet ist, den relativen Diagenese- / Metamorphosegrad von Tonschiefern zu bestimmen.

2.1.2 Aufbau der Tonminerale und Glimmer

In diesem Kapitel soll der grundlegende Aufbau der Phyllosilikate, im wesentlichen nach BAILEY (1984), kurz skizziert werden.

Prinzipiell werden Schichtsilikate (z.B. Tonminerale und Glimmer) aus tetraedrischen und oktaedrischen Schichten aufgebaut. Die grundlegende Einheit der Tetraederschicht ist T_2O_5 (T = tetraedrisches Kation (Si, Al,...)). Drei Basis-Sauerstoff (O)-Atome werden mit den benachbarten Tetraedern geteilt, so daß die Tetraeder durch gemeinsame O-Atome über Spitzen miteinander verbunden sind und ein hexagonales Netz bilden. Das vierte O-Atom eines jeden Tetraeders, der Apikalsauerstoff, zeigt in eine Richtung senkrecht zur Schicht und

bildet gleichzeitig einen Teil der oktaedrischen Schicht. In diesem Schichttyp steht das oktaedrische Kation in oktaedrischer Koordination mit den O_2 und OH⁻-Ionen. Hier müssen nicht alle Oktaederplätze besetzt sein. Die einzelnen Oktaeder sind lateral miteinander verbunden, indem sie sich die oktaedrischen Ecken teilen.

Die Glimmer können nach BAILEY (1984) mit Hilfe der Lagenladung (x) pro Formeleinheit in zwei Gruppen eingeteilt werden. Die Klassifikation erfolgt in echte oder biegsame Glimmer, mit einer Idealladung von x = -1.0 (kompensiert im wesentlichen durch monovalente Zwischenschicht-Kationen) und in die Sprödglimmer mit x = -2.0 (kompensiert hauptsächlich durch divalente Zwischenschicht-Kationen). Die beiden Gruppen können in zwei weitere Untergruppen unterteilt werden, in trioktaedrische und in dioktaedrische Glimmer. Die kleinste Struktureinheit enthält drei Oktaeder. Sind alle drei Oktaeder mit einem oktaedrischen Kation in ihrem Zentrum besetzt, so ist die Schicht trioktaedrisch. Sind nur zwei der drei Oktaeder besetzt, ist sie dioktaedrisch (BAILEY, 1984, Seite 3, Tab. 1). Die Glimmerspezies wird auf der Basis der Zusammensetzung der idealen Endglieder unterschieden. In den natürlichen Glimmern sind die tetraedrischen Kationen (Z) Si, Al und Fe³⁺ (selten Be²⁺). Die Zwischenschicht-Kationen (X) in den echten Glimmern sind K oder Na (selten Rb, Cs, NH₄ oder H₃O) und in den Sprödglimmern Ca oder Ba (selten Sr). Die oktaedrischen Kationen (Y) sind Mg, Al, Fe²⁺ und Fe³⁺, aber auch andere mittelgroße Kationen wie Li, Ti, V, Cr, Mn, Co, Ni, Cu und Zn können eingebaut werden. Die Strukturformel für Glimmer lautet wie folgt:

Die Schichtladung setzt sich aus der Kombination vier wesentlicher Austauschreaktionen zusammen (R = Kation):

(1) Substitution von R^{3+} (gewöhnlich Al oder Fe³⁺)

oder R²⁺ (Be) für Si⁴⁺ in den Tetraederpositionen;

- (2) Austausch von R^{1+} oder R^{2+} für R^{2+} oder R^{3+} auf den Oktaederplätzen;
- (3) Freie Pätze auf den Oktaederplätzen;
- (4) Dehydroxylierung von OH nach O.

Die einfachste Struktur der Phyllosilikate zeigt der Kaolinit, dessen Basisabstand (Abstand zwischen den Basisflächen zweier aufeinander folgender identischer Tetraederschichten) sich lediglich aus einer tetraedrischen und einer dioktaedrischen Schicht zusammensetzt. Alle anderen Glimmer, wie zum Beispiel Smektit, Illit und Muskovit werden aus einer 2:1-Lage (zwei tetraedrische und eine oktaedrische Schicht) gebildet. In solch einer Lage umschließen die oberen und unteren Anionen eine oktaedrische Schicht. Sie bilden gleichzeitig die gewöhnlichen Verbindungsflächen zu den zwei gegensätzlich ausgerichteten tetraedrischen Schichten. Die 2:1-Lagen werden durch große, positiv geladene Kationen in den Zwischenschichten gebunden und kompensiert. Das Zwischenschicht-Kation sitzt im Hohlraum eines Sechserringes, wo zwei tetraedrische Schichten sich gegenüber liegen. Die 2:1-Lagen überlagern sich in dieser Region (BAILEY, 1984), so daß die hexagonalen Ringe der angrenzenden Basisoberflächen die Zwischenschicht-Kationen aufreihen und einschließen.

Abb. 9: Glimmerstruktur (trioktaedrisch) parallel der a,b-Ebene im primitiven (P-)Translationsgitter.

Das hexagonale Netzwerk ist nach RADOSLOVICH (1960) oftmals verdreht, hin zu einer ditrigonalen Ausbildung. In den meisten Spezies werden die angrenzenden Schichten durch die Zwischenschicht-Kationen leicht verschoben. Durch die tetraedrische Rotation (siehe unten) wird jeder andere Basal-Sauerstoff in das Zentrum eines jeden Rings verschoben und dabei die Größe der Öffnung reduziert. Das Zwischenschicht-Kation hat jetzt nur noch sechs nächste Sauerstoff-Nachbarn anstatt der zwölf, die für die ideale hexagonale Symmetrie notwendig wären. Der daraus resultierende Basisgitterabstand wird ein wenig größer als die Mächtigkeit der Lage selbst, wobei die Basissauerstoff-Oberflächen nicht in Kontakt miteinander stehen. Da die Zwischenschicht-Kationen die angrenzenden Lagen miteinander verbinden, ist die strukturelle Variation der Glimmerschichten begrenzt.

Abb. 10: Glimmerstruktur (trioktaedrisch) parallel zur a,c-Ebene, mit der Einheitszelle. c sin β = Basisgitterabstand.

In jeder 2:1 Lage ist die obere tetraedrische Schicht in Bezug zur unteren mit a/3 gestapelt (tetraedrische Rotation), um eine oktaedrische Koordination um die oktaedrischen Kationen zu ermöglichen. Die Stapelung kann auf allen drei kristallographischen Achsen in positiver oder negativer Richtung auf dem pseudohexagonalen Netzwerk erfolgen. Ändert sich die Stapelungsrichtung von Lage zu Lage regelmäßig, auch wenn die Lagen selbst durch Zwischenschicht-Kationen verbunden sind, so wird die Periodizität entlang der Z-Richtung ein vielfaches von 10 Å betragen und Polytypie zeigen. Schichtstrukturen, die sich bei

gleicher Zusammensetzung nur in den Schichtsequenzen unterscheiden, werden als Polytype bezeichnet und haben eine unterschiedliche Symmetrie und c-Periodizität.

HEWITT & WONES (1972) zeigten, daß der Austausch von unterschiedlich großen R^{2+} Kationen in den Oktaedern nur den b-Parameter beeinflußt, aber in Verbindung mit einer höheren Kationenladung auch den Basisgitterabstand c sin ß. Generell werden in allen Glimmern die tetraedrischen Schichten verdickt und die oktaedrischen ausgedünnt, damit sie sich verbinden können. SMITH & YODER (1956) fanden nur sechs Standard- oder Idealglimmertypen, die mit einer Periodizität zwischen einer und sechs Lagen gebildet werden können. In einem gegebenen Kristall mit trioktaedrischer Zusammensetzung: 1M, 2Or, 2M₁, $2M_2$, 3T und 6H (Bezeichnung nach RAMSDELL, 1947) ist dabei nur ein Zwischenschicht-Stapelungswinkel (positiv oder negativ) erlaubt. Die resultierende Bewegung von 1M und 2Or erfolgt entlang nur einer Achse, die von $2M_1$ und $2M_2$ entlang von zwei Achsen und die von 3T und 6H entlang von drei Achsen. 3T kommt nur sehr selten in der Natur vor, und 6H wurde noch nicht gefunden. Aufgrund der durch die Zusammensetzung kontrollierten Stapelung sind viele der natürlich vorkommenden Glimmerstrukturen weder echt polytyp noch echt polymorph untereinander.

2.1.3 Die Umwandlung von Smektit in Illit / Muskovit

VELDE & NICOT (1985) verglichen zwei jurassische Sandstein-Einheiten im Nordsee-Vikinggraben in ihrer Diagenese-Entwicklung. Sie kamen zu dem Schluß, daß zwei Faktoren einen starken Einfluß auf die Entwicklung der Tonminerale haben: der offene Porenraum in den Sedimenten, der mit verantwortlich ist für das Verhältnis von hydrostatischem zu lithostatischem Druck und die K - H⁺ Aktivität der Lösungen, die durch das poröse Sediment fließen. Am Beispiel der Golfküsten-Sedimente zeigte AWWILLER (1993), daß die Tonsteine während der Diagenese ein offenes System bildeten, in dem während der Illitisierung der Smektite Kalium aus den Kalifeldspäten der Sandsteine den Tonssteinen zugeführt wurde. Ebenfalls für die Golfküsten-Sedimente definierte EBERL (1993) den Begriff der Versenkungsdiagenese in drei Stadien: Die Bildung nicht quellender, illitähnlicher 2:1-Smektitschichten, welche durch eine Kalium-Zwischenschicht getrennt werden, die Neubildung von größeren Domänen mit kaliumreichen Phasen und die Auflösung der Smektite durch organische Säuren und schließlich die Rekristallisation von Illit.

JABOYEDOFF & THELIN (1996) konnten für die Gesteine der Briançonnais-Zone in den Schweizer Voralpen zeigen, daß der Anteil an quellfähigem Smektit als Zwischenschicht im Illit an der Grenze von Diagenese zu Anchizone bereits auf 2 bis 4 % zurückgeht. Die Umwandlung von Smektit in Illit wird im wesentlichen über das Auflösen von kleineren Kristalldomänen zugunsten von größeren Neubildungen (Ostwald-Reifung) gesteuert (ESSENE & PEACOR, 1995). Die Umwandlungsreaktionen von Smektit in Illit sind nach VELDE (1992) und Velde & VASSEUR (1992) bei hohen Aktivierungsenergien abhängig von der Temperatur und bei niedrigen Aktivierungsenergien zeitabhängig (Abb. 11). Der Einfluß der kinetischen Reaktionen nimmt mit zunehmender Versenkungstiefe zu. Die wichtigsten Parameter, die die Transformation von Smektit in Illit kontrollieren, sind nach HUANG et al. (1993) die Temperatur, die Zeit und die Kaliumkonzentration.

Abb. 11: Dargestellt ist der Reaktionsfortschritt der Smektit-Illit-Umwandlung in Abhängigkeit von der Versenkungstiefe. a) Die Aktivierungsenergie bestimmt den Verlauf der Reaktionsfortschrittskurve. b) Hier ist der Reaktionsfortschritt im Bezug zur Reaktionszeit (Alter des Sediments) in einer versenkten Einheit dargestellt (aus VELDE, 1992).

Die Reifung des Illits von einem relativ ungeordneten, subkristallinen 1Md Illit hin zu einem 2M₁ Illit/Muskovit wird gesteuert von der Anreicherung von Kalium, verbunden mit einem Wasserverlust in den Zwischenschichten. Während dieser Umwandlung entstehen Illite mit besser geordneten Kristallen, die subparallele und teilweise zusammengewachsene Pakete bilden. Diese werden schließlich durch defektfreie größere Kristalle des 2M₁ Illits ersetzt. Während dieses Prozesses wachsen die Kristalle zumindest teilweise lateral zusammen, indem die Dislokationen parallel zu den Lagen migrieren. Dabei findet eine lokal auf diese Defektbereiche konzentrierte Lösung und Rekristallisation statt (JIANG et al., 1997). In der Fraktion < 2 µm beginnt die Umwandlung bei etwa 150 °C (HUNZIKER et. al., 1986) und erreicht bei einer Temperatur von 260 °C (höhere Anchizone) über 85 % des 2M₁ Muskovits. YODER & EUGSTER (1955) stellten fest, daß der 2M₁ Hellglimmer bei erhöhten Temperaturen stabil ist, und VELDE (1965) erkannte, daß die 2M₁ Muskovite die ideale Zusammensetzung von Muskovit besitzen. Sie stellen über einen größeren Metamorphosebereich die einzig stabile Form dar. Die Zunahme der relativen Menge von 2M, Muskoviten steht in Verbindung mit einem Ansteigen von Temperatur und Druck während der Versenkung (MAXWELL & HOWER, 1967), dem Grad der Metamorphose (WEAVER &

BROEKSTRA, 1984) und der Intensität der hydrothermalen Alteration (DI MARCO et al., 1989). Nach DALLA TORRE & FREY (1997) sind an der Grenze von Diagenese zu Anchizone noch maximal 40 % 1M Illite vorhanden. Unter anchizonalen Bedingungen beträgt der Gehalt der $2M_1$ Varietät schon 70 bis 90 % und erreicht zu Beginn der Epizone 100 %.

Aus den zitierten Untersuchungen läßt sich folgern, daß die Umwandlung von Smektit in Illit während der Versenkungsdiagenese im Wesentlichen von der Aktivierungsenergie und damit von der Temperatur bzw. der Zeit, der Kaliumkonzentration in den Fluiden und der Zusammensetzung der Sedimente sowie deren offenem Porenraum (Druck) abhängt.

2.1.4 Der Einfluß geologischer Faktoren auf die Illitkristallinität

Die Temperatur ist nach dem heutigen Wissensstand der entscheidende physikalische Parameter, der die Illitkristallinität beeinflußt (KÜBLER, 1967a + b, 1968). Dies wurde unter anderem von SCHAER & PERSOZ (1976) in kontaktmetamorphen Aureolen belegt und durch hydrothermale Experimente (z. B. KRUMM, 1984) nachgewiesen. Die Rolle anderer Faktoren wie Zeit, Fluid-Druck und Stress ist nicht zufriedenstellend geklärt (FREY, 1987). Zumindest für die Umwandlung von Smektit in Illit ist bei niedriger Reaktions-Aktivierungsenergie auch die Zeit ein wichtiger Faktor (VELDE, 1992; VELDE & VASSEUR, 1992). Die Porosität des Gesteins, die Zusammensetzung der Porenlösung (Kaliumgehalt) und die Illitdegradation (z.B. durch Verwitterung) können die Illitkristallinität beeinflussen (HUNZIKER et al., 1986). Eine Verkieselung sowie ein hoher Anteil bituminöser oder kalkiger Substanzen verringern den offenen Porenraum im Gestein. Der Transport von Ionen, die für die Entwicklung des Illitgitters wichtig sein können, wird dadurch behindert (WEBER, 1972a und b). So können verschiedene Lithologien aufgrund eines geänderten Stoffbestandes oder auch Porenraumes bei gleicher Metamorphosegeschichte zu unterschiedlichen IIIlitkristallinitäts-Werten führen (siehe auch ÁRKAI, et al. 1981 und VELDE & NICOT, 1985). Synmetamorphe Deformation (Schieferung) beschleunigt das Wachstum der Kristalldomänen und führt zu einem bevorzugten Wachstum der größeren auf Kosten der kleineren Körner (MERRIMAN et al., 1990; 1995 und ROBERTS et al., 1991). Eine Korrelation zwischen Illitkristallinität und dem Gitterstrain konnte nicht festgestellt werden, aber generell nimmt der Gitterstrain mit zunehmender Kristallitgröße ab (ÅRKAI et al., 1997).

Der wichtigste, bereits von DUNOYER DE SEGONZAC (1970) erkannte Störfaktor ist die Anwesenheit detritischer Glimmer. Haben diese umgelagerten Hellglimmer in ihrem Liefergebiet eine höhere Kristallinität erlangt als die Neubildungen, so überlagern sich die ererbten Illitkristallinitäten mit den zu untersuchenden. Mit abnehmender Korngröße, d.h. wachsender relativer Oberfläche, reagiert der Detritus zunehmend auf die Einwirkung der Diagenese. Das reicht von Überwachsungen bis zur Auflösung bzw. Rekristallisation. Daraus folgt, daß es wichtig ist, möglichst keine großen unempfindlichen Glimmer durch die Aufbereitung zu zerkleinern und eine möglichst kleine Korngröße zu analysieren. Dieser mit zunehmender Korngröße verstärkende Einfluß der ererbten Illitkristallinität ist von REUTER (1985) auch geochronologisch nachgewiesen worden. Deshalb wird die Bestimmung der Illitkristallinität generell an Korngrößen < 2 μ m durchgeführt. Jedoch ist bei kleinen Korngrößen ebenfalls mit einer Vermischung von detritischem Altbestand, Neuwachstum und Degradation durch Verwitterung zu rechnen. Aber auch die Probenaufbereitung, Meßbedingungen und Analysen (z.B. sich überlagernde Basalreflexionen) können einen Einfluß auf die Illitkristallinität haben (FREY, 1987; siehe auch Kapitel 2.1.11).

2.1.5 Bestimmung der Illitkristallinität mit dem Röntgendiffraktometer (RDA)

Zur Ableitung der Illitkristallinitäts-Werte aus einem Röntgendiffraktogramm gibt es verschiedene Methoden. Die wichtigsten sollen hier kurz vorgestellt werden.

2.1.5.1 Weaver-Index ("sharpness ratio")

WEAVER (1960) war der erste, der die Schärfe des 10 Å Illit-Diffraktionspeaks in Beziehung zum Metamorphosegrad der Schiefer gesetzt hat. Dazu definierte er den Begriff der "sharpness ratio". Es stellt das Intensitätsverhältnis zwischen 10,0 Å und 10,5 Å (Peakhöhe bei 10,0 Å / Peakhöhe bei 10,5 Å) dar. Der Zahlenwert der "sharpness ratio" nimmt mit steigender Kristallinität zu. Werte niedriger als 2,3 zeigen die diagenetische Zone an, Werte von 2,3 bis 12,1 die Anchizone und Werte größer als 12,1 die Epizone (WEAVER, 1960; KÜBLER, 1968). Der Fehler in der Bestimmung des Weaver-Index nimmt mit zunehmender Illitkristallinität zu, d.h. mit steigender Metamorphose und damit steiler werdenden Flanken der Peaks wird diese Methode ungenauer. Der Weaver-Index ist folglich für Gesteine ungeeignet, die überwiegend anchimetamorph überprägt worden sind.

2.1.5.2 Kübler-Index (Halbhöhenbreite = FWHM)

Die Halbhöhenbreite wird als Mittelwert der inneren und äußeren Grenzen des (001)-Illit-Peaks auf halber Strecke zwischen Untergrund und Peakmaximum berechnet. Der englische Begriff "Full Width at Half Maximum" (FWHM) beschreibt den Meßbereich exakter als der deutschsprachige "Halbhöhenbreite". In den Grafiken dieser Arbeit wird die Abkürzung für den englischen Ausdruck FWHM verwendet. Die Maßeinheit für die Halbhöhenbreite ist die Differenz in Winkelgrad ($\Delta^{\circ}2\Theta$). Sie wurde erstmals von KÜBLER (1968) angewendet. Der Zahlenwert des Kübler-Index nimmt mit zunehmender Kristallinität ab. Die Grenzwerte, die von KÜBLER (1984, Seite 578) benutzt wurden, liegen für die niedriggradige und hochgradige Grenze der Anchizone bei 0,42 und 0,25 $\Delta^{\circ}2\Theta$ CuK_{α}. Mit zunehmender Illitkristallinität nimmt der Fehler in der Bestimmung der Halbhöhenbreite ab (KÜBLER, 1968). Die Halbhöhenbreite wird mit Hilfe der Scherrer-Gleichung (SCHERRER, 1918; KLUG & ALEXANDER, 1974) wie folgt definiert:

$FWHM = \Delta^{\circ}2\Theta = K * \lambda / N * d * \cos\Theta$

mit:	FWHM	=	Halbhöhenbreite in rad 20
	Κ	=	Konstante; Werte von 0,89 und 0,94
			(KLUG & ALEXANDER, 1974)
	λ	=	Strahlungs-Wellenlänge
	d	=	Abstand der Gitterebenen
	Ν	=	Anzahl der Flächen
	N*d	=	Größe kohärenter Diffraktionsdomänen
	Θ	=	Bragg-Winkel einer bestimmten Reflexion.

Der Kübler-Index ist im Vergleich zu anderen Methoden der Peakanalyse relativ unempfindlich gegen Schwankungen in der Untergrundkorrektur (KRUMM, 1992). Er hat sich international durchgesetzt und wird deshalb auch in dieser Arbeit bevorzugt.

2.1.5.3 Weber-Index (relative Halbhöhenbreite)

Die dimensionslose relative Halbhöhenbreite wurde von WEBER (1972a, b) eingeführt. Sie soll den Einfluß unterschiedlicher Meßparameter ausgleichen. Der Weber-Index ergibt sich aus dem Quotient der Halbhöhenbreite (siehe Kapitel 2.1.5.2) des Illit-(001)-Peaks zum Quarz-(100)-Peak, multipliziert mit 100. Bei früheren Arbeiten wurden natürliche, texturierte Quarzstandards verwendet, die eine Eichung erschweren.

2.1.5.4 Integralbreite

Die Integralbreite ist ein Maß für die Breite einer Röntgeninterferenz. Sie wird definiert als der Quotient der integrierten Peakintensität und der Intensität am Scheitelpunkt der Interferenz (WILSON, 1965). Der Vorteil dieser Methode liegt darin, daß im Gegensatz zur Halbhöhenbreite die gesamte Peakfläche mit in die Bestimmung eingeht, also auch Verbreiterungen an den Peakflanken mit erfaßt werden. Die Ergebnisse dieser Analysemethode sind in den Tabellen IV bis VI im Anhang aufgeführt.

2.1.6 Eichung der Illitkristallinität

Da die Illitkristallintäts-Messungen von Institut zu Institut variieren, können die von Kübler etablierten Meßwerte für die Ober- und Untergrenze der Anchimetamorphose nicht direkt auf andere Institute übertragen werden. Deshalb ist eine Eichung erforderlich. Die Abweichungen resultieren im Wesentlichen aus den verschiedenen Aufbereitungs- und Präparationsverfahren sowie den unterschiedlichen Geräteeinstellungen für die Messungen. Daher wurden die Illitkristallinitäts-Messungen im IGL der Universität Gießen an zwei verschiedenen Standardgruppen geeicht. Eine Eichreihe bestand aus bereits fertig aufbereitetem Gesteinspulver in Tonfraktion. Diese zwölf Standardproben stammten von Prof. Frey (Basel). Hier mußten aus dem Pulver nur noch die Meßpräparate nach der in Gießen verwendeten Methode hergestellt werden. Der Vorteil dieser "Frey"-Standards besteht darin, daß die Eichung an Präparaten erfolgt, die nach dem jeweiligen Institutsverfahren hergestellt wurden und nicht an polierten Gesteinsanschliffen, wie es früher üblich war. Ein weiterer Vorteil ist, daß diese Proben in den Instituten von Prof. Kübler und von Prof. Frey direkt geeicht wurden. Nachteilig ist, daß der Einfluß der unterschiedlichen Aufbereitungsmethoden der verschiedenen Institute hier nicht berücksichtigt werden kann. Die zweite Eichreihe, der sogenannte CIS-Standard, besteht aus Probenmaterial von WARR & RICE (1994). Diese sechs Proben wurden in Form von grob gebrochenem Gesteinsmaterial (< 2 cm) verschickt. Der Vorteil dieses Standards ist, daß neben der Herstellung der Meßpräparate auch die Aufbereitung nach dem Verfahren des jeweiligen Instituts erfolgt. D.h., hier fließen die wichtigsten Variablen wie Aufbereitung, Präparatherstellung und Geräteeinstellung in die Eichmessungen ein. Auch wird dieser Standard mittlerweile an vielen Instituten verwendet. Ein Nachteil dieser Methode ist, daß diese Eichung an den Werten von WARR & RICE (1994) erfolgt, die wiederum ihre Werte mit Hilfe von polierten Gesteinsanschliffen dieser Proben mit dem Labor von Prof. Kisch korreliert haben. Kisch stellte zusätzlich noch eine Standardabweichung zu den Küblerwerten fest. Dieses Verfahren benötigt zwei Korrelationen

mehr als der "Frey"-Standard. In dieser Arbeit werden beide Standards nebeneinander verwendet und miteinander verglichen.

2.1.6.1 "Frey"-Standard

Abb. 12: Korrelation der Illitkristallinität mit dem "Frey"-Standard. Dieses Diagramm zeigt die FWHM_{Luft}-Werte der 12 Standardproben der Institute in Basel, AWI-Bremerhaven und Frankfurt, aufgetragen gegen die Werte des IGL in Gießen. Die durchgezogene Linie stellt die Regressionsgrade (Formel wie oben abgebildet) für den Vergleich der Gießener und der Baseler Messungen dar.

Die Ober- und Untergrenze der Anchimetamorphose ist nach KÜBLER et al. (1979, Tab. 3) und nach FREY et al. (1980) bei $0,42 \Delta^{\circ} 2\Theta$ und $0,25 \Delta^{\circ} 2\Theta$ Halbhöhenbreite (FWHM) definiert und wird ausschließlich durch die Illitkristallinität festgelegt. Die zwölf Gesteinsproben, die von Herrn Prof. Martin Frey, Universität Basel stammen, wurden freundlicherweise von Herrn Dr. Rainer Petschick, Geologisch-Paläontologisches Institut in Frankfurt am Main, zur Verfügung gestellt. Das Probenmaterial war ein trockenes Gesteinspulver der Kornfraktion < 2 µm. Die Pulverproben wurden nach dem oben beschriebenen Verfahren sedimentiert. Die Korrelation der Meßwerte aus Gießen und Basel (Abb. 12) ist sehr gut und führt nur zu einer geringfügigen Verschiebung der Grenzwerte für die Anchizone auf $0,39 \Delta^{\circ} 2\Theta$ und $0,24 \Delta^{\circ} 2\Theta$. Die Unterteilung der Diagenese-Zone in eine niedere und eine höhere liegt nach HESSE & DALTON (1991) bei $0,60 \Delta^{\circ} 2\Theta$, bzw. $0,54 \Delta^{\circ} 2\Theta$ in dieser Korrelation.

2.1.6.2 Eichung der Illitkristallinität am Crystallinity Index Standard (CIS)

Abb. 13: Korrelation der Illitkristallinität an dem CIS-Standard. Dargestellt sind die Messungen von zehn luftgetrockneten Präparaten, die aus vier Standardproben hergestellt wurden.

Der CIS-Standard wurde von WARR & RICE (1994) entwickelt und soll dazu beitragen, eine bessere Kalibrierung der Messungen zwischen den verschiedenen Labors zu ermöglichen. Die Illitkristallinitäten wurden unter Verwendung von polierten Gesteinsanschliffen mit den Werten von Kisch korreliert und somit an den von Kisch und Kübler etablierten Grenzen der Anchimetamorphose (KISCH, 1980, 1990) geeicht. Die CIS-Standardproben stammten aus einem Profil des Very Low-Grade Metamorphosegürtels von Nord-Cornwall, SW-England. Die regionale Metamorphose wurde von verschiedenen Autoren intensiv untersucht. Es konnten mit Hilfe petrologischer Analysen unterschiedliche Metamorphosestadien bestimmt werden, für die auch Illitkristallinitätsdaten analysiert wurden. Die CIS-Proben wurden in Heidelberg nach den Empfehlungen der IGCP 294 IC Arbeitsgruppe aufbereitet (KISCH, 1991). Das Standardmaterial wird in Form von grob gebrochenem (< 2 cm) Gesteinsmaterial verschickt. Dieses Material soll dann von dem jeweiligen Labor nach der eigenen Methode aufbereitet werden, so daß die verschiedenen Aufbereitungsmethoden in die Eichung der Illitkristallinität mit einfließen.

Metamorphose	10 Å Illit Frey-Standard (Δ°2Θ)	10 Å Illit CIS-Kunert (Δ°2Θ)	10 Å Illit CIS-Standard (Kübler-Werte) (Δ°2Θ)
niedrige Digenese	> 0,54	> 0,44	> 0,60
hohe Diagenese	0,39 < 0,54	0,35 < 0,44	0,42 < 0,60
niedrige Anchizone	0,32 < 0,39	0,30 < 0,35	0,34 < 0,42
hohe Anchizone	0,24 < 0,32	0,25 < 0,30	0,25 < 0,34
Epizone	< 0,24	< 0,25	< 0,25

Tab. 2: Metamorphosegrenzen nach der Korrelation mit verschiedenen Standards ausgedrückt in $(\Delta^{\circ}2\Theta)$.

Leider stand für die Aufbereitung nur sehr wenig Probenmaterial zur Verfügung, so daß der Einfluß der verschiedenen in Gießen angewendeten Aufbereitungsmethoden nicht getestet werden konnte. Die Messungen wurden aufgrund des geringen Probenvolumens an mit H_2O_2 dispergierten Präparaten durchgeführt. Nur die Probe SW6 konnte auch als ein mit Ultraschall dispergiertes Präparat gemessen werden. Die Meßwerte zeigen eine sehr gute lineare Korrelation mit einem Korrelationskoeffizienten von R² = 0,98 (Abb. 13). Die Ergebnisse der CIS-Standardmessungen sind im Anhang, Tabelle Ib, präsentiert.

An diesem Standardisierungsversuch kann kritisert werden, daß zunächst eine Kalibrierung des Heidelberger Labors mit dem des Beer Sheva Instituts (Kisch) zwar mit den CIS-Standards, aber anhand von polierten Gesteinsdickschliffen erfolgte und nicht, wie verlangt, an texturierten Pulverpräparaten < 2 µm. Ein weiterer Kritikpunkt ist, daß nicht die Werte von Kisch angegeben wurden, sonderen die korrelierten von Warr, die dann wieder mit den eigenen Messungen korreliert werden mußten. Die statistische Genauigkeit dieses CIS-Standards ist nicht ausreichend, da nur vier Proben zur Verfügung stehen. Die Metamorphosegrenzen für die beiden verschiedenen Standards sind in Tabelle 2 aufgeführt. Für diese Arbeit wurde die Anchizone in ihrer Mitte nach HESSE & DALTON (1991) in einen hohen und einen niedrigen Bereich unterteilt.

2.1.7 Probenauswahl

Für die Auswahl der Gesteinsproben sind zwei entscheidende Kriterien zu beachten. Zum einen die geologische Fragestellung bzw. Zielsetzung und zum anderen die Möglichkeiten und Grenzen, die die gewählte Methode zur Analyse der Proben erlaubt. Die Auswahl der Gesteinsproben mußte so getroffen werden, daß mit Hilfe der Methode der Illitkristallinität die erwartete thermische Anomalie möglichst ohne störende geologische Einflüsse ausgearbeitet werden konnte. Dazu war es notwendig, über einen möglichst großen Bereich des Arbeitsgebietes flächendeckend ein dichtes Netz von Proben annähernd gleicher Zusammensetzung zu nehmen.

Es wurden nur Illitkristallinitätswerte von Proben aus einer stratigraphischen Einheit mit einheitlicher lithologischer Zusammensetzung verglichen. Dadurch sollten Schwankungen in der Illitkristallinität vermieden werden, die von einer unterschiedlichen Gesteinszusammensetzung oder einem variierenden Porenvolumen, d.h. letztendlich von einer unterschiedlichen Kaliumzufuhr, bzw. Über- oder Untersättigung herrühren könnten. Das zu vergleichende Material sollte die gleiche Korngröße sowie das gleiche Festigkeits- und Bruchverhalten besitzen, damit die Proben während der mechanischen Aufbereitung keine Unterschiede zeigen, die sich wiederum auf die Illitkristallinität auswirken könnten. In dieser Studie wurden nur Pelite aus der Tonschiefer-Grauwacken-Wechsellagerung des Unterkarbons (Kulm) beprobt, wobei pelitreiche Lagen bevorzugt wurden. Diese stratigraphische Einheit ist über einen großen Bereich der Frankenwälder Querzone aufgeschlossen. Die Sedimente stammen aus dem selben südlichen Liefergebiet (J. SCHÄFER, 1996) und wurden alle von Suspensionsströmen transportiert. Die Tonfraktion von Sedimenten, die aus Trübeströmen abgelagert wurden, enthalten mit großer Wahrscheinlichkeit wechselnde Anteile verschiedenartiger detritischer Glimmer. Jedoch ist die Beprobung einer paläogeographisch einheitlichen Flyschserie in der Praxis für dieses Arbeitsgebiet die beste denkbare Näherung an ein Ausgangsmaterial einheitlicher Zusammensetzung.

In dieser Arbeit wurden 199 Tonschieferproben aus dem Unterkarbon untersucht. Die Lage der Proben und ihre Probennummer sind in der Karte (Abb. 14) dargestellt; genaue Angaben sind in der Tabelle II im Anhang zu finden.

Abb. 14: Geologische Karte: Nummer und Lage der Probenahmepunkte.

2.1.8 Aufbereitung der Gesteinsproben

Um die Einflüsse der Probenaufbereitung und der angewendeten Meßmethoden auf die Illitkristallinität gering zu halten, wurden die geltenden Richtlinien des IGCP 294 (KISCH, 1991) als Grundlage verwendet.

Die Gesteine wurden zuerst gewaschen. Anschließend wurden die makroskopisch sichtbaren verwitterten Bereiche, die Entfärbungsaureolen sowie die mineralisierten Klüfte entfernt. Ein entscheidender und äußerst schwieriger Punkt der Probenaufbereitung ist die Tonfraktion aus dem festen Gesteinsverband zu lösen, ohne den kristallinen Zustand der Phyllosilikate zu verändern und ohne die Minerale künstlich auf Tonkorngröße zu verkleinern. Aus diesem Grund wurden die Proben "nur" mit einem Backenbrecher zerkleinert. Auf ein anschließendes Mahlen des Gesteinszerreibsels wurde völlig verzichtet. Das Material wurde auf einer mittleren Stufe zerkleinert. Danach wurde das Backenbrecherklein mit einem Sieb (< 0,63 mm) von dem Gesteinsmehl getrennt, um den Abrieb mit der restlichen Verwitterungskruste zu entfernen. Daraufhin wurde das Backenbrecherklein mit einer kleineren Stufe weiter zerkleinert, um schließlich die kleinste Stufe fünfmal zu durchlaufen. Von der zerkleinerten Gesteinsprobe wurde mit einem Sieb die Fraktion < 0,63 mm abgetrennt und zur weiteren Verarbeitung zu Tonpräparaten bereitgestellt.

In dieser Arbeit wurden zur Aufbereitung der Feinfraktion, insbesondere zur Auflösung von Illitagglomeraten, die eine größere Korngröße vortäuschen können, drei unterschiedliche Verfahren gegenübergestellt und deren Einfluß auf die Illitkristallinität getestet. Für jedes dieser Verfahren wurden ca. 100 g der Fraktion < 0,63 mm aus einer Probe verwendet:

a) Behandlung mit Wasserstoffperoxid (H₂O₂)

Mit diesem Verfahren sollten die organischen Bestandteile aus der Probe durch Oxidation entfernt (WEBER, 1972b) und die eventuell vorhandenen Kornaggregationen aufgelöst werden. 100 g Probenmaterial wurden mit 250 ml 35prozentigem H_2O_2 aufgegossen und die Suspension mehrmals täglich aufgeschüttelt. Nach dem Abklingen der Reaktion erfolgten eine Neutralisation der Suspension mit NH₃ und eine anschließende 30minütige Behandlung in einer Ultraschallwanne (80 - 160 W, 220 V, 350 kHz).

b) Behandlung nur mit Ultraschall (US)

Der Ultraschall sollte die eventuell vorhandenen Kornaggregate auflösen. Dazu wurden 100 g Probe 30 min in einer Ultraschallwanne dispergiert. c) 100 g der Feinfraktion wurden nicht behandelt.

Zur Analyse der Illitkristallinität wird üblicherweise die Kornfraktion mit einem Äquivalenzdurchmesser < 2 µm verwendet. Diese Tonfraktion wurde mit Hilfe des Atterbergverfahrens gewonnen (fünf Durchläufe). Die Anreicherung der Dispersion mit Calciumchlorid diente zur Kationensättigung in den Smektiten und in den quellfähigen Zwischenschichten. Diese reagieren sehr empfindlich auf einen Ladungsaustausch, der durch die Fluidumgebung gefördert wird. Die Smektitlagen in den Illit-Smektit-Wechsellagerung sind in vielen Gesteinen überwiegend Ca-gesättigt bzw. können durch schwach saure Lösung Ca-gesättigt werden. Deshalb bevorzugen die meisten Autoren (u.a. Kübler, Kisch und Frey) den Einsatz von Calciumchlorid zur Kationensättigung von Illiten aus einer Ca-defizitären Umgebung (KISCH, 1991), z.B. Na-reiche und K-defizitäre Schwarzschiefer, deren quellfähige Lagen zu einer Na-Sättigung tendieren (KÜBLER, 1990). Nach der Kationensättigung wurden die Proben mit einer Zentrifuge (5000 upm, T = 30 min, Temperaturschalter bei 25 °C) weiter konzentriert.

2.1.8.1 Anfertigung der Meßpräparate zur RDA-Messung

Für die Bestimmung der Illitkristallinität mit dem Röntgendiffraktometer (RDA) ist es notwendig, texturierte Präparate herzustellen, deren Tonminerale in ihrer kristallographischen Vorzugsrichtung eingeregelt sind. Damit wird erreicht, daß die Auflösung der RDA-Reflexionen der eines "Pseudo-Monokristalls" entspricht. Bisher wurde in Gießen ein Absaugverfahren verwendet, bei dem die Probensubstanz auf einen Zellulosenitrat-Filter gezogen wurde. Das Verfahren zur Präparatherstellung wurde nun geändert, um einen Datenvergleich zwischen verschiedenen Labors zu gestatten. Es wurden Texturpräparate durch einfache Sedimentation hergestellt. KRUMM (1992) empfahl eine Belegungsdichte von nur 0,25 mg / cm², mit der sich schon ein Plateau in der Halbhöhenbreite einstellen soll. KISCH (1991) hingegen empfahl eine Belegungsdichte von mindestens 3 mg /cm² und ÁRKAI (1991) eine von 1 - 3 mg / cm². Mit dieser Belegungsdichte wird eine maximale Intensität im Röntgendiffraktogramm (Plateau) erreicht, die wiederum die Halbhöhenbreite beeinflußt (KISCH, 1991). LEZZERINI et al. (1995) empfahlen eine Belegungsdichte, die auf jeden Fall > 0,5 mg / cm^2 sein sollte, da unterhalb dieses Grenzwertes die Illitkristallinitäts-Werte steil abfallen würden. Nach EBERL et al. (1987) sollte die Belegungsdichte nicht geringer als 1 mg / cm² sein, da sonst die quellfähigen Tone nicht vollständig expandieren können. Es wurden Texturpräparate mit einer Belegungsdichte von 2 mg / cm² hergestellt. Mit dieser Belegungsdichte ist sichergestellt, daß sowohl das Intensitätsplateau erreicht als auch die quellfähigen Komponenten erfaßt werden. Gleichzeitig kann die nötigte Tonmaterialmenge gering gehalten werden.

Um ein Texturpräparat mit einer bestimmten Belegdichte anfertigen zu können, muß zunächst der Feststoffgehalt der Suspension bestimmt werden. Dazu wurde das Naß-Wägeverfahren nach KRUMM (1984) eingeführt. Der Suspension wurde ein bestimmtes Aliquot entnommen, eingetrocknet und ausgewogen. Mit den Daten wurde die Menge an Suspension berechnet, die notwendig war, um die gewünschte Präparatdicke von 2 mg / cm² zu erzielen. Diese wurde so aufbereitet, daß 1000 μ l Suspension die entsprechende Belegdichte ergaben. Diese definierte Suspensionsmenge garantiert eine gleichbleibende Sinkhöhe für die Illite und somit eine gleichmäßige Qualität der Texturierung. Die Suspension wurde in Metallzylindern, die mit einer Gummiringdichtung auf den Objektträger aufgesetzt wurden, bei max. 50 °C im Trockenschrank eingetrocknet.

2.1.9 Apparative Bedingungen und Meßverfahren

Generator	Siemens D500
Anregungsspannung	
und Heizstromstärke	40 kV / 30 mA
Strahlung	Cu K
Aperturdiaphragmen	1°
Detektordiaphragmen	1°
Divergenzblende	0,5°
Graphit-Monochromator	
Zeitkonstante	2 s
Scanbereich	2 bis 50 °2
Schrittweite	0,01°

Die Messungen liefen computergestützt mit dem Programm Difftract 3000 (Siemens), und die Peakprofile wurden mit dem Programm MacDiff 3.3 (Petschick) untersucht.

2.1.9.1 Interne Standards

Interne Standards werden verwendet, um zum einen die RDA und die Intensität der Röntgenröhre zu justieren und zum anderen, um die Lage der Peaks im Röntgendiffraktogramm der Meßpräparate zu korrigieren. Als Standard diente ein industriell gewonnenes Quarzpulver (Merck, Art. 7536, 99,9 % SiO₂) und ein Präparat, das aus eigenem Probenmaterial hergestellt wurde. Die Quarzpräparate dienten zur Korrektur des nutzungsbedingten Abfalls der Intensität der CuK -Röntgenröhre. Das Quarzpulver wurde in der Scheibenschwingmühle gemahlen und anschließend im gleichen Verfahren wie die Illitproben aufbereitet und präpariert bzw. in Tablettenform gepreßt. Neben den eigenen Quarzmessungen wurden jeden Monat Kontrollmessungen durchgeführt sowie eine Justierung des Geräts vorgenommen.

Zur Eichung der Peakpositionen in den Röntgendiffraktogrammen der Meßpräparate der Proben des Arbeitsgebietes konnte der Quarzpeak (001) bei d = 4.26 Å verwendet werden. Mit dem wesentlich intensitätsstärkeren Quarzpeak (100) bei d = 3.31 Å konnte keine Korrektur vorgenommen werden, weil dieser von Peaks aus anderen Mineralphasen (vorwiegend Illit) überlagert wird. Da eine ausreichende Menge an natürlichem Quarz in den Meßpräparaten vorhanden war, wurde darauf verzichtet, zusätzlich Quarzpulver in das Präparat einzubringen. Eine Anreicherung von Quarz hätte die Texturierung der Präparate verschlechtert.

Ein abnutzungsbedingter Abfall der Intensität der Röntgenröhre von etwa 1100 Counts auf nur 600 Counts verursachte keine Änderung in der Halbhöhenbreite des 10Å Illitpeaks (Abb. 15). Für den internen Standard variierte die Halbhöhenbreite über den gesamten Meßzyklus um 5 %.

Abb. 15: Interner Meßstandard zur Überprüfung der Abweichung der FWHM während der Meßkampagne. Aufgetragen sind die Intensitäten und die Halbhöhenbreiten für die einzelnen Standardmessungen.

2.1.10 Phasenanalyse

2.1.10.1 Qualitative Phasenanalyse

Die Qualitative Phasenanalyse wurde an den Röntgeniffraktogrammen mit Hilfe der ICPDS-Datei (International Centre for Diffraction Data) durchgeführt. Die Proben wurden im luftgetrockneten Zustand sowie nach einer Ethylen-Glycol-Behandlung mit dem Röntgendiffraktometer gemessen. Anschließend wurden die Peakprofile verglichen, um eventuell vorhandene, quellfähige Tonminerale von den nicht quellenden unterscheiden zu können.

A) Quellfähige- und Wechsellagerungsminerale

a) Diskreter Smektit

Diskreter Smektit (Montmorillonit) ist nach der Ethylen-Glycol-Behandlung im Röntgendiffraktogramm an einem eigenständigen Peak bei 17 Å erkennbar. Er hat seinen Stabilitätsbereich in der Diagenesezone, wird aber bei 70 - 120 °C bereits instabil (BRAUKMANN, 1984; DUNOYER DE SEGONZAC, 1970; VELDE, 1977). Im Arbeitsgebiet konnte mit der RDA kein diskreter Smektit nachgewiesen werden.

b) Illit-Smektit

Als Illit-Smektite bezeichnete SRODON (1984) unregelmäßig geordnete Wechsellagerungsminerale. Sie zeigen nach der Ethylen-Glycol-Behandlung, je nach Anteil der quellfähigen Lagen, ihre stärkste Interferenz zwischen 12 Å und 10 Å. Auch im Bereich der anchizonalen Metamorphose können Illit-Smektite, ohne daß sie nach der Glykolierung durch eine Linienverschiebung im Diffraktogramm erkennbar sind, bis zu 10 % am Reflex des 10 Å Illitpeaks beteiligt sein (BRAUKMANN, 1984). Nach der Etyhlen-Glycol-Behandlung ist in diesem Fall eine Intensitätsabnahme, verbunden mit einer geringeren Halbhöhenbreite, festzustellen.

Bei höheren Smektitgehalten 15 % geben Reflexe bei 6-8 °2 und 33 - 35 °2 eindeutige Hinweise auf das Vorhandensein von Wechsellagerungsmineralen (SRODON, 1984). Der 6 - 8 °2 Reflex bildet oft eine Schulter am 8.89 °2 (10 Å) Illitreflex aus und eignet sich selten für genauere Smektitbestimmungen. Nach der Ethylen-Glykol-Behandlung ist eine Verschiebung zu 11 Å bis 12 Å typisch. Sind der BB1-Index (Basisbreite des (001)-Reflexes bei etwa 10 Å) und der BB2-Index (Basisbreite des (004)-Reflexes bei 35 Å) > 4°, so handelt es sich nach SRODON (1984) um irreguläre Illit-Smektite (IS). Sind die Indizes < 4°, so ist von einer Quellfähigkeit < 15 % auszugehen. Die RDA-Analysen ergaben für Proben aus dem hochdiagenetischen bis schwach anchizonalen Metamorphosebereich eine Intensitätsabnahme des 10 Å Peaks, verbunden mit einer schmaleren Halbhöhenbreite. Das ist ein Hinweis auf einen Smektitgehalt von maximal 10 %. Auch die BB1- und BB2-Indizes zeigen eine Quellfähigkeit < 15 %.

c) Chlorit-Smektite

Chlorit-Smektite (Corrensit-Illit-Wechsellagerungen) bilden reguläre Wechsellagerungen mit Reflexen bei 2,9 °2 bis 3,1 °2 , 6,2 °2 , 9,2 °2 , 12,2 °2 , und bei 30 °2 im luftgetrockneten Zustand. Nach einer Ethylen-Glycol-Behandlung verschieben sich die Linien im Diffraktogramm in höhere Winkelbereiche. Die Chlorit-Smektite sind eine diagenetische Vorstufe der 7 Å Chlorite. BRAUKMANN (1984) beschrieb eine Umwandlung mit zunehmender Temperatur: Montmorillonit/Vermiculit \rightarrow Corrensit \rightarrow Chlorit. Chlorit-Smektite konnten in den eigenen RDA-Analysen nicht mehr identifiziert werden, dafür jedoch deutliche Reflexe der 7 Å Chlorite.

B) Diskreter Illit / Muskovit

Die qualitative Bestimmung des Illit / Muskovit wird in diesem Abschnitt schrittweise beschrieben.

a) Illit-Modifikationen

Mit zunehmendem Diagenesegrad ist eine Umwandlung der Illit-Modifikationen in den Sedimenten in folgender Richtung zu erwarten: $1Md \rightarrow 1M \rightarrow 2M$ (YODER & EUGSTER, 1955). VELDE (1965) betrachtete die 1Md- und 1M-Hellglimmer als metastabile Phasen, die sich mit zunehmender Zeit, Temperatur und steigendem Druck in die stabile 2M-Modifikation umwandeln. Die Polytype können durch das Auftreten charakteristischer Reflexe unterschieden werden. Nach YODER & EUGSTER (1955) kann die 1M-Modifikation durch den 3,66 Å-Peak und den 3,07 Å-Peak und der 2M₁-Polytyp durch die 2,80 Å-Interferenz nachgewiesen werden. Leider besteht das Problem, daß verschiedene Minerale mit den unterschiedlichen Peaks koinzidieren: Albit (3,66 Å), Graphit (3,35 Å), Pyrophyllit (3,07 Å), Chlorit, Magnesit und Kalifeldspat bei 2,80 Å sowie Chlorit, Kaolin, Smektit und Paragonit bei 2,58 Å. In den Röntgendiffraktogrammen der eigenen Proben waren die oben genannten Ordnungslinien für den 1M-Illit so schwach ausgeprägt, daß ein 1M-Polytyp nicht bestimmt werden konnte. Der 2,8 Å Peak des $2M_1$ -Illites war deutlich zu erkennen und ließ sich meist gut vom 2,82 Å Chloritpeak unterscheiden. Folglich ist in den Proben im wesentlichen 2M-Illit / Muskovit vorhanden.

b) Esquevin-Index

Mit dem Esquevin-Index (5 Å / 10 Å-Intensitätsverhältnis) lassen sich Al und K- sowie Mg und Fe-betonte Illite bzw. Muskovite grob unterscheiden (ESQUEVIN, 1969; DUNOYER DE SEGONZAC, 1970). In allen Proben war es möglich, diesen Quotienten zu berechnen. 10 % der analysierten Proben hatten einen Index < 0,3. Sie zeigten somit eine muskovitischphengitische Zusammensetzung KAl(Mg,Fe)(Si₄) O₁₀(OH)₂. 90 % der Proben zeigten dagegen einen Index > 0,4 und damit eine muskovitische Zusammensetzung [KAl₂(Si₃Al)O₁₀(OH)₂] (Abb. 16). In Abbildung 17 ist eine deutliche Abhängigkeit des Esquevin-Indexes von der Halbhöhenbreite zu erkennen. Die kontinuierliche Entwicklung von einem Fe / Mg-betonten Illit mit großer Halbhöhenbreite hin zu einem Al-betonten Illit mit kleiner Halbhöhenbreite ist typisch für metamorph gebildete Illite. Sie ist in diesen Proben ein deutliches Anzeichen für überwiegend metamorph neu gebildete Illite.

Abb. 16: Dargestellt ist in absoluter Häufigkeit die Lage der unterkarbonischen Tonsiltschiefer in Bezug zum Muskovit bzw. Phengitfeld nach dem Esquevin-Index.

c) Nach SRODON & EBERL (1984) und SRODON (1984) gibt es noch weitere Möglichkeiten, mit Hilfe der RDA den Illit qualitativ zu bestimmen:

• Beträgt der $d_{(002)}$ -Reflex 10 ± 0.5 Å, so ist das ein Indiz für Kalium als dominierendes Zwischenschicht-Kation im Illitgitter. Das trifft für fast alle analysierten Proben zu. Nur wenige liegen mit ihrem Wert leicht darüber.

• Liegt der $d_{(060/33-1)}$ -Peak im Meßbereich von 1,50 Å ± 0,01 Å, so spricht das für einen dioktaedrischen Glimmer. Die Werte aller gemessenen Proben befinden sich in dem Toleranzbereich von $d_{(060/33-1)}$ für dioktaedrische Glimmer.

Abb. 17: Dargestellt ist der Esquevin-Index in Bezug zur Illitkristallinität.

• Mit Hilfe des Intensitätsverhältnisses (Intensity-Ratio (Ir)) kann der Smektitgehalt in den Wechsellagerungen der Illite bestimmt werden. Dabei wird das Verhältnis aus der Intensität des $d_{(001)}$ und des $d_{(003)}$ Illitpeaks im luftgetrockneten sowie im mit Ethylen-Glycol behandelten Zustand gebildet und das Ergebnis des ersten durch das des zweiten Quotienten geteilt. Ist das ermittelte Intensitätsverhältnis > 1, so sind quellfähige Schichten im Illit enthalten. Leider wurde in unseren Mischpräparaten der $d_{(003)}$ -Peak von Peaks anderer Mineralphasen überlagert, so daß diese Methode verfälschte Ergebnisse lieferte.

C) Diskreter Chlorit

Chlorit war neben Illit ein Hauptbestandteil aller Tonfraktionen im Kulm des Arbeitsgebietes. Orientierte Präparate charakterisieren die Chloritgruppe mit Reflexen bei 14 Å. Bei Interferenzen von 14,1 bis 14,2 Å ($d_{(001)}$) handelt es sich meist um (Ortho-) Chlorit (ÁRKAI, 1991). Nach BROWN (1961) haben eisenreiche Chlorite kleinere $d_{(001)}$ - und $d_{(003)}$ - und größere $d_{(002)}$ - und $d_{(004)}$ -Reflexe als magnesiumreiche Chlorite. Ist der Quotient des Intensitätsverhältnisses 14 Å / 7 Å kleiner als 0,33, so ist dies ein erstes Indiz auf einen eisenreichen Chlorit (BROWN 1961; BRINDLEY & BROWN, 1980). Chlorite verwittern sehr schnell und sind im Sedimentationszyklus instabil. Eisenreiche Chlorite werden im Gegensatz zu den magnesiumreichen als diagenetische Neubildung angesehen (FLEHMIG & GEHLKEN, 1989). Aber auch magnesiumreiche Chlorite können authigener Herkunft sein (BROWN, 1961; VELDE, 1977). In 95 % der Proben konnten eisenreiche Chlorite identifiziert werden. Sie sind typisch für anchizonale Metamorphosebedingungen. War der Wert > 0,33, so war das meist an schlecht ausgebildete Chloritpeaks gebunden.

D) Kaolinit

Kaolinit (im weitesten Sinne) konnte in den Proben nicht gefunden werden.

E) Quarz

Quarz war neben Illit / Muskovit und Chlorit ebenfalls deutlich in den Diffraktogrammen der untersuchten Proben zu erkennen. Zwei charakteristische Peaks sind der $d_{(100)}$ Peak bei 4,26 Å und der $d_{(101)}$ bei 3,343 Å.

F) Feldspäte

An Feldspäten ließ sich Albit anhand der Reflexe der 4,03 Å und 3,2 Å Linien erkennen. Der Orthoklasreflex (3,25 Å) läßt sich erahnen. Die beiden anderen Alkalifeldspatreflexe 4,23 Å und 3,37 Å wurden von Illit- und Chloritreflexen überlagert. In diesen Präparaten ließen sich die Feldspäte nicht genauer differenzieren.

G) Zusammenfassung

Der Vergleich der Diffraktogramme von Proben, die im lufttrockenen und im mit Ethylen-Glycol behandelten Zustand gemessen wurden, zeigte keine Linienverschiebung der Illit- und Chloritpeaks durch quellfähige Wechsellagerungen. In den Diffraktogrammen der niedrigstgradig metamorphen Proben, aus dem Grenzbereich der Diagenese zur Anchimetamorphose, war eine geringfügige Abnahme der Halbhöhenbreite im glykolierten Zustand durch eine Verschiebung der koinzidierenden Wechsellagerungen vom Typ Smektit-Illit an der Flanke des 10 Å Illitpeaks zu erkennen (siehe oben).

Die unter Kapitel B) beschriebenen RDA-Analysen zeigen, daß in den Illiten der Tonfraktion der untersuchten Kulmproben die dioktaedrische 2M-Modifikation des Illits / Muskovits dominiert. Sie besitzen Al-reiche Oktaederschichten, und in ihren Zwischenschichten ist hauptsächlich Kalium eingebaut. Der Anteil an quellfähigen Komponenten liegt unter 15 %. Auch die analysierten Chlorite sind frei von Wechsellagerungen mit quellfähigen Mineralen. Alle untersuchten Proben in der Korngrößenfraktion < 2 µm setzen sich aus einem sehr ähnlichen Hauptmineralbestand zusammen: Fe-reicher Chlorit, Illit / Muscovit (2M), Quarz und Feldspat. Eine genauere Unterteilung der Mineralgruppen war nicht möglich, da zum einen die JCPDS-Datei für nicht texturierte Präparate erstellt wurde und es sich hier um gut texturiertes Probenmaterial handelt. Zum anderen überlagern sich die Peaks der einzelnen Mineralgruppen (z.B. der Chlorite und Feldspäte). Sie konnten nur unzureichend getrennt werden oder ihr Anteil war unter der RDA-Nachweisgrenze.

2.1.10.2 Halbquantitative Phasenanalyse

Für untexturierte Präparate ist eine quantitative Mineralphasenanalyse mit Hilfe der RDA prinzipiell möglich. Hierbei gilt, daß die Reflexintensitäten proportional zur Konzentration des Minerals sind. In der Praxis ist das Resultat dieser Analysemethode jedoch nur als eine Näherung zu betrachten, da die das Ergebnis beeinflussenden Faktoren von Probe zu Probe nicht konstant sind und nicht immer erfaßt werden können. So nehmen der Massenschwächungskoeffizent der Minerale, ihre chemische Zusammensetzung und die der Gesamtprobe, die Kristallinität der Minerale, ihre Polytypie sowie die quellfähigen Anteile bei Tonmineralen und auch die Texturierung Einfluß auf die Reflexintensität der Minerale. Zur Bestimmung der Absolutkonzentrationen können innere Standards mit der gleichen Mineralogie und Chemie wie das zu bestimmende Mineral verwendet werden. Dies ist für die stark variierenden Tonminerale jedoch nicht durchführbar. Mit Hilfe von gleichbleibenden Präparationsbedingungen können aber die Präparatdicke, die Korngrößenverteilung und die Kornsortierung relativ konstant gehalten werden.

Nach FERREIRO MÄHLMANN (1994) nimmt mit der Verbesserung des Ordnungsgrades des Illitgitters auch die Reflexintensität zu. Reine Illitpräparate weisen, bei gleicher Illitmenge, mit zunehmender Metamorphose höhere Intensitäten auf, d.h. die röntgendiffraktometrisch bestimmten Intensitätsverhältnisse können nur als relative Mengenverhältnisse verwendet werden.

Mit der von BRAUKMANN (1984) überarbeiteten halbquantitativen Methode, die ursprünglich von JOHNS et al. (1954) entwickelt und von BISCAYE (1965) erweitert wurde, lassen sich die Mengenverhältnisse der Tonminerale ermitteln. Dazu werden die Präparate glykolisiert und die Peakflächen der jeweils ersten Peaks mit Hilfe des MacDiff 3.3 Programms bestimmt. BRAUKMANN (1984) gab für die halbquantitative Methode folgende Korrekturfaktoren an:

- Illit-Smektit (glyc.)	17,0 Å	x 0,25
- Chlorit-Smektit (glyc.)	15,5 Å	x 0,33
- Illit/Muskovit	10,0 Å	x 1,00
- Chlorit	07,0 Å	x 0,50

Da quellfähige Tonminerale in den Präparaten nicht direkt nachgewiesen werden konnten bzw. deren Anteil als Wechsellagerungsmineral im Illit < 10 % - 15 % war, sollten nur Illit / Muskovit und Chlorit an der Zusammensetzung der Tonminerale beteiligt sein. 80 % der Proben hatten einen Illit-Anteil an Tonmineralen von 60 bis 90 %, der Rest bestand im Wesentlichen aus Chlorit (Tabelle III, im Anhang).

2.1.11 Reproduzierbarkeit der Illitkristallinitäts-Messungen

Auf der Basis des standardisierten Verfahrens zur Bestimmung der Halbhöhenbreite soll in diesem Abschnitt die Reproduzierbarkeit der Illitkristallinitäts-Meßwerte untersucht werden. ROBINSON et al. (1990) unterteilten die Faktoren, die diese Reproduzierbarkeit beeinflussen, in drei Gruppen. Sie unterschieden zwischen Fehlern in der Aufbereitungsmethode, Fehlern durch die Bestimmung der jeweiligen Illitkristallinitäts-Meßgröße ("intra sample variance") und den geologischen Fehlern ("inter sample variance").

2.1.11.1 Fehler in der Probenaufbereitung

A) Varianz durch die Anwendung unterschiedlicher Dispersionsverfahren

Je nach Zusammensetzung des Gesteins wird eine unterschiedliche Aufbereitung empfohlen. So soll z.B. in karbonatreichen Gesteinen mit Hilfe von Salzsäure der Karbonatanteil entfernt werden und in kohlenstoffreichen tonigen Gesteinen (z.B. Schwarzschiefern) der Kohlenstoff durch die Anwendung von H_2O_2 oxidiert werden. Der Einsatz dieser Zusätze birgt das Problem, daß ihr Einfluß auf das Kristallgitter der Illite nicht zufriedenstellend geklärt ist.

Die Untersuchungen beschränkten sich auf siltige Tonschiefer, die keinen Kalzit, dafür aber Kohlenstoffpartikel enthielten. In dieser Arbeit wurde an 26 Proben der Einfluß von drei unterschiedlichen Verfahren zur Dispersion (Auflösung von Kornaggregaten) der Tonminerale auf die Illitkristallinität untersucht (siehe Kapitel 2.1.8). Dem Ausgangsmaterial wurde vor dem Atterbergvorgang H_2O_2 zugesetzt. Nach Ablauf der Reaktion wurde es zusätzlich mit Ultraschall in einer Ultraschallwanne behandelt. Im zweiten Verfahren wurde das gleiche Ausgangsmaterial nur mit Ultraschall (US) untersucht. Im dritten Verfahren wurde das Material unbehandelt (NADA) im Atterbergzylinder getrennt. Zusätzlich wurde an sechs Proben getestet, wie die Illitkristallinitäten sich nach einer Langzeitbehandlung (> vier Wochen) mit H_2O_2 verhalten.

Abb. 18: In diesem Diagramm sind die Auswirkungen der unterschiedlichen Dispersionsverfahren auf die Illitkristallinität dargestellt. Es wird zusätzlich zwischen kurzer und langer H₂O₂-Einwirkungszeit unterschieden.

Durch den Zusatz einer bestimmten Menge H_2O_2 reagierten bei gleicher Anwendungsdauer die verschiedenen Proben unterschiedlich heftig und lange. Die Reaktion war meist mit einer mäßigen bis heftigen, aber kurzen Wärmeentwicklung (80 °C) verbunden. Das Resultat war eine Erhöhung der Intensität und der Halbhöhenbreiten des Illits im Röntgendiffraktogramm. Das Ergebnis ist im Balkendiagramm (Abb. 18) dargestellt. Auf den ersten Blick ist zu erkennen, daß sich die Halbhöhenbreiten der unbehandelten Proben (FWHM-NADA) und der mit Ultraschall behandelten Proben (FWHM-US) nur geringfügig unterscheiden. Sie liegen durchschnittlich 2 % unter dem FWHM-US Wert. Auch besteht eine sehr gute Korrelation zwischen den FWHM-NADA und FWHM-US-Messungen, mit n = 15 und R² = 0,96 (Abb. 19a).

Abb. 19b:

Abb. 19c:

Abb. 19d:

Abb. 19a - d: In den Graphen sind die Illitkristallinitäten der verschiedenen Dispersionsverfahren gegeneinander aufgetragen. Die Abkürzung US steht für Ultraschallbehandlung, NADA für unbehandelte Proben, H_2O_2 -kurz für eine kurze Einwirkungsdauer von H_2O_2 , und H_2O_2 -lang steht für eine lange Einwirkungsdauer von H_2O_2 .

Die Korrelation zwischen den FWHM- H_2O_2 -kurz- und den FWHM-US-Werten (Abb. 19b) ist ebenfalls relativ gut (n = 19; R² = 0,89). Hier liegt der FWHM- H_2O_2 -kurz-Wert aber durch-schnittlich 7,5 % höher als die FWHM-US-Werte. FWHM- H_2O_2 -lang und FWHM-US korrelieren gleichfalls gut (Abb. 19c: n = 6, R² = 0,91). Der Wert von FWHM- H_2O_2 -lang liegt jedoch im Mittel 36 % über dem von FWHM-US.

In Abb. 19d Ist die Halbhöhenbreite (FWHM) der Dispersionsmethoden NADA und US gegen H_2O_2 -kurz aufgetragen. Es besteht eine gute Korrelation zwischen den verschiedenen Parametern. FWHM- H_2O_2 zeigt aber generell eine deutlich schlechtere Illitkristallinität an.

Abb. 19e: Aufgeführt ist die Intensität (in Counts) der unbehandelten bzw. mit Ultraschall behandelten gegen die mit H_2O_2 behandelten Proben.

Das Intensitätsverhältnis zwischen den drei Parametern zeigt ebenfalls eine gute Korrelation, wobei eine Peakintensitätssteigerung von den NADA-Proben über die US- hin zu den H_2O_2 -Proben zu beobachten ist. Die Untersuchung zeigt, daß unabhängig vom gewählten Dispersionsverfahren der Trend in der Entwicklung der Halbhöhenbreiten erhalten bleibt. Ob die Illite einer Ultraschallbehandlung in einer Wanne unterzogen wurden oder nicht, wirkte sich nur gering auf die Illitkristallinität aus. Eine H_2O_2 -Behandlung wirkte sich jedoch, je nach Dauer, z. T. beträchtlich auf die Halbhöhenbreite aus. WEBER (1972a) gab die Zeit der H_2O_2 -Behandlung mit mehreren Stunden an. In dieser Arbeit wurde die Fraktion < 0,63 mm so lange dem H_2O_2 ausgesetzt, bis die sichtbare Oxidation abgeschlossen war. Dabei wurden unterschiedlich heftige Reaktionen mit unterschiedlichen. Reaktionszeiten beobachtet. Dies führte z.B. bei Probe K026 zu einer wesentlich schlechteren Illitkristallinität gegenüber der NADA- oder US-Behandlung. Eine über mehrere Wochen über die sichtbare Reaktionszeit hinaus andauernde Einwirkung des H_2O_2 auf die Tonminerale machte sich in der Halbhöhenbreite deutlich bemerkbar. Sie war durchschnittlich über 30 % höher als es die Messungen nach den anderen Behandlungsmethoden zeigten.

Die Zunahme der Intensität durch eine H_2O_2 -Behandlung, verbunden mit einer Abnahme der Illitkristallinität wurde auch von KRUMM (1992) beobachtet. Er vermutete als Ursache eine bevorzugte Freisetzung kleinerer und schlechter geordneter Körner. WEBER (1972b) führte die schwächere Illitkristallinität darauf zurück, daß durch eine H_2O_2 -Behandlung ein Teil der

hydrophoben organischen Substanzen, die die Illite einschließen, gelöst werden. Durch H_2O_2 -Behandlung soll der vor der Metamorphose bzw. Porenlösung besser geschützte und deshalb schwächer kristalline Illit freigesetzt werden. Schon FÜCHTBAUER & GOLDSCHMIDT (1963) hatten beobachtet, daß Tonminerale aus bituminösen Sedimenten einen geringeren Diagenesegrad anzeigen als aus vergleichbaren bitumenfreien Sedimenten. KÜBLER (1968) wies darauf hin, daß in Sedimenten, die reich an bituminösen bzw. kohligen Substanzen sind, der Aufbau des Illit-Gitters verzögert wird.

Die Beobachtungen führen zu der Frage, ob die Dispersion der Tonminerale mit H_2O_2 eine kontrollierbare Reaktion zur Folge hat, die in verschiedenen Proben angewendet, zu Meßwerten führt, die miteinander verglichen werden dürfen. Es ist unklar, warum nach einer Langzeiteinwirkung von H_2O_2 die Illitkristallinitäten schwächer werden. Nach diesen Untersuchungen hatte ich mich für eine Dispersion der Tonminerale nur mit Ultraschall in einer Ultraschallwanne entschieden, die eine schonendere und auch besser kontrollierbare Methode darstellt. Nach dieser Form der Dispersion war die Intensität der Peaks im Röntgendiffraktogramm etwas geringer als nach einer H_2O_2 -Behandlung, aber deutlich höher als für unbehandelte NADA-Proben (Abb. 19e).

B) Einfluß der Belegungsdichte

Die Belegungsdichte der Texturpräparate wurde für diese Arbeit auf 2 mg / cm² festgelegt. Mit dieser Belegungsdichte wird zum einen das Intensitätsplateau und damit eine reproduzierbare Halbhöhenbreite erreicht, zum anderen können die quellfähigen Komponenten erfaßt werden, die bei einer geringeren Belegunsdichte nicht voll expandieren können. Ein weiterer Vorteil ist die geringe Menge an Tonmaterial, die für die Untersuchung notwendig ist (siehe auch Kapitel 2.1.8.1).

Der Schwankungsbereich der Belegungsdichte beträgt maximal 0,5 mg / cm². Dies entspricht nach der Auswertung von LEZZERINI et al. (1995) einer Standardabweichung (1) von 2,5 % der Halbhöhenbreite. Vergleicht man die Messungen der Ilitkristallinität von FRANKE (1984) mit einer nicht konstanten Belegdichte >> 2mg / cm^2 mit den Messungen an dem gleichen Probenmaterial, aber mit einer definierten Belegdichte von 2 mg / cm^2 (Abb. 20), so bleibt der generelle Trend der Metamorphoseentwicklung erkennbar. Jedoch ist die Streung der Werte relativ groß. Aus den Untersuchungen folgt, daß für die Bestimmung der Illitkristallinität die Belegdichte der Präparate auf einen Wert > 1 mg / cm² definiert sein sollte. Die Metamorphosegrenzen können nur mit Hilfe von Referenzmessungen definiert werden, wobei die Referenzpräparate die gleiche Belegdichte haben sollten wie die zu untersuchenden Präparate.

Abb. 20: Gegenüberstellung der Illitkristallinitäten derselben Proben, einmal mit einer schwankenden Belegdichte der Meßpräparate >> $2mg / cm^2$ (FRANKE, 1984) und einmal mit einer festgelegten Belegdichte von 2 mg / cm².

C) Qualität der Texturierung

Werden mehrere Präparate aus einer homogenen Gesteinsprobe hergestellt, so können die Halbhöhenbreiten der Illite zwischen den Präparaten variieren. Grund dafür kann eine schwankende Qualität der Texturierung, der Belegdichte oder der Beschaffenheit und Größe der Illit-Kristalldomänen sein. Der Fehler in der Präparatherstellung läßt sich durch einen drehenden RDA-Meßtisch minimieren. Es wurde versucht, Präparate herzustellen, die sich in ihrer Qualität gleichen. Die durchgeführten Tests zeigten keine statistische Abhängigkeit zwischen den Schwankungen in der Präparatqualität und der Illitkristallinität. Es wurde in einer Testreihe versucht, die Qualität der Texturierung der Präparate mit einem Texturgoniometer zu bestimmen. Dazu wurden vier Präparate der Probe K17 in Basel von Dr. Stünitz gemessen. Die untersuchten Präparate zeigten alle eine gute Texturierung. Jedoch eignet sich diese Methode nicht für einen qualitativen Vergleich von unterschiedlichen Proben. Hier besteht das Problem, daß neben der Texturierung der Illite auch deren Reifegrad d.h. die Größe der Kristalldomänen einen nicht bekannten Einfluß auf die Messungen haben. Eine weitere Möglichkeit, die Texturierung eines Präparates abzuschätzen, ist das Intensitätsverhältnis der d₍₁₁₀₎ und d₍₀₀₀₎-Illitpeaks, das in allen Proben eine gute Texturierung anzeigt.

2.1.11.2 Variationen am Röntgendiffraktometer

A) Variationen durch Schwankungen in der Meßeinrichtung

Die Abweichungen im Meßergebnis, die auf die Meßeinrichtung zurückzuführen sind, werden durch Schwankungen von Röhrenspannung und -strom oder durch Funktionsänderungen des Detektors oder der Zähleinrichtung hervorgerufen. Hier fließen auch eine abweichende Lage des Präparates von der Horizontalen im Probenhalter und die Variation in der Präparathöhe ein. Die Fehler lassen sich abschätzen, wenn man das Präparat auf den Meßtisch legt und mehrfach hintereinander mißt und wenn man das Präparat mehrfach auf den Probenhalter montiert und wiederum jeweils mißt. Jedes Präparat wurde nach der Montage auf den Probenhalter dreimal nacheinander gemessen. Die Mehrfach-Meßprofile wurden anschließend mit Hilfe des Analyseprogrammes übereinandergelegt. Damit wurde ein gemitteltes Röntgendiffraktogramm für jedes Präparat erstellt. In den Wiederholungsmessungen zeigten, je nach Dispersionsverfahren, 95 % der jeweiligen Proben folgende Standardabweichung (1) vom arithmetischen Mittelwert ihrer Halbhöhenbreite:

unbehandelte Proben (NADA)	1 < 6 %
mit Ultraschall behandelte Proben	1 < 4 %
mit H ₂ O ₂ behandelte Proben	1 < 6 %

B) Abweichung in der Bestimmung der Peakbreite

Eine genaue und reproduzierbare Festlegung des Untergrundes eines Röntgendiffraktogrammes wirkt sich stark auf die zu bestimmende Peakbreite aus. Die rechnerische Bestimmung der Untergrundkurve ist einer empirischen Nachzeichnung überlegen (KRUMM, 1992). Der Fehler bei der Bestimmung der Peakbreite kann durch mehrere wiederholte Auswertungen einer Messung eingegrenzt werden (siehe oben). Der Peakbreitenfehler überlagert die Fehler, die durch Schwankungen in der Meßeinrichtung entstehen. Zur Bestimmung der Peakbreite wurde in Gießen das Programm MacDiff 3.3 (entwickelt von Dr. R. PETSCHICK / Frankfurt) verwendet. Dieses Programm ermöglicht es, die Untergrundkorrektur für alle Analysen gleich zu definieren. Es wurden die Rohdaten mehrerer Proben insgesamt fünfmal analysiert. Die Ergebnisse waren identisch. Somit konnte ausgeschlossen werden, daß eine Schwankung der Analysewerte durch die Anwendung des Analyseprogrammes hervorgerufen wurde. Im allgemeinen zeigten die RDA-Peakprofile im Arbeitsgebiet einen relativ einheitlichen Verlauf, so daß gut mit der automatischen Untergrundkorrektur gearbeitet werden konnte. Wichen Meßprofile stark von dem durchschnittlichen Peakprofil der Proben des Arbeitsgebietes ab, mußte die automatisierte Untergrundkorrektur zusätzlich von Hand angeglichen werden. Auf diese manuelle Anpassung der automatischen Untergrundkorrektur reagiert die Halbhöhenbreite gegenüber den anderen RDA-Meßmethoden wie die Integralbreite oder die Varianz (KRUMM, 1992) relativ unempfindlich.

2.1.11.3 Geologische Varianz

Die geologische Varianz, d.h. der Einfluß der Lithologie auf die Illitkristallinität, wurde bereits in den Kapiteln 2.1.4 und 2.1.7 ausführlich beschrieben. Zur Vollständigkeit dieses Kapitels ist sie hier nochmals erwähnt.

A) Varianz im Schichtkörper

Die geologischen Faktoren können schon in einer Probenlokalität, in der gleichen lithologischen Einheit, eine große Streuung der Halbhöhenbreiten verursachen. Diese Schwankungen können durch eine Beprobung in einem vertikalen und einem horizontalen Profil entlang des Schichtkörpers erfaßt werden. Die Varianz der Illitkristallinität im Schichtkörper wurde im Aufschluß A45 der Schiefergrube Schmiedebach untersucht. Das Gestein stammte aus einem unverwitterten "Blauschiefer"-Horizont der Grube Schmiedebach, bürgt folglich für einen niedrigen Gehalt an Kohlenstoff und eine gleichbleibende Feinkörnigkeit. Es wurden vier Proben, in einem Abstand von je zwei Metern, parallel zur Hauptfoliations-fläche und fünf Proben, vertikal zur Hauptfoliationsfläche, in einem Abstand von je einem Meter genommen. Für die Horizontale, also entlang einer Foliationsfläche, ergab sich eine Standardabweichung vom arithmetischen Mittelwert 1 = 3 %; für die Vertikale 1 = 15 %. Insgesamt resultiert ein 1 10 % für alle Proben.

B) Fehler durch die Probenheterogenität

Selbst innerhalb einer Probe besteht eine Heterogenität, die die IK-Werte streuen läßt. Sie kann durch das Messen mehrerer Präparate, die aus dem gleichen Material einer Probe hergestellt werden, erfaßt werden. In Abb. 21 ist das Ergebnis einer solchen Meßreihe aufgetragen. Die Präparate stammen ebenfalls von einer Probe aus dem Blauschieferhorizont der Schiefergrube Schmiedebach. Die Graphik zeigt unbehandelte (NADA) und mit Ultraschall (US) behandelte Präparate. Die Streubreite ist relativ groß (für K017-NADA von 0,214 - 0,235 °2 ; 1 = 2,15 - 2,77 % und für K017-US von 0,228 - 0,265 °2 ; 1 = 3,59 - 6,5 %). Die gestrichelten Linien verbinden die Mehrfachmessungen der Präparate miteinander, die erneut im Probenchip montiert wurden. Die Schwankungen lagen jedoch im Rahmen der vorher beschriebenen Streubreite.

Abb. 21: Es sind 17 Meßvorgänge von Präparaten der Probe K17 dargestellt. In jedem Meßvorgang erfolgten drei Messungen. Die ultraschallbehandelten (US) Präparate durchliefen jeweils zwei Meßvorgänge. Die Messungen sind nach Präparatnummern sortiert. Die kleinen Buchstaben zeigen Messungen nach wiederholter Montage auf dem Probenhalter an, und die gestrichelten Linien verbinden die Doppelmessungen des jeweiligen Präparates. Dargestellt sind der analysierte Mittelwert (+) und die Varianz der Meßwerte als vertikaler Balken.

2.1.11.4 Ergebnisse der Varianz-Untersuchungen

Die Ergebnisse dieser Teiluntersuchung zeigen, daß die Reproduzierbarkeit der Illitkristallinitäts-Messungen im wesentlichen von der geologischen Varianz abhängt. Alle anderen hier beschriebenen Einflüsse, die durch exaktes Arbeiten relativ gering gehalten werden können, werden von ihr überlagert. Generell sind die untersuchten Fehlerquellen stark miteinander verflochten, und ihr Anteil ist in Abhängigkeit von anderen Faktoren variabel. Eine Fehlerfortpflanzungsrechnung führt deshalb nicht zu einer Abschätzung der generellen Genauigkeit der Illitkristallinitäts-Methode (KRUMM, 1992). In seiner Größenordnung kann aber der Fehler in der Reproduzierbarkeit durch die in Tabelle 3 angegebenen Werte abgeschätzt werden. Diese Tabelle wurde von KRUMM (1992) aufgestellt und durch eigene Werte ergänzt. Der von KRUMM (1992) angegebene Fehler (1) liegt zwischen 15 und 22 Prozent. In dieser Arbeit liegt der Fehler (1) bei 10 Prozent für höhermetamorphe Proben.

Fehlerquelle	Methode zur Fehlerabschätzung	Blenkinsop (1988)	Robinson et al. (1990)	Krumm (1992)	diese Arbeit
A:	wiederhohlte	0.70 %	Computer	Computer	Computer
Bestimmung	Auswertung	-	"neglegible"	0.2 - 1.2 %	0 %
der Peakbreite	einer Methode	3.50 %			
B: A) +	wiederhohlte	3.60 %	3.9 - 4.4 %	5.7 %	0.44 %
Maschinen-	Messung	-	(Schiefer)	(480 cps)	-
variationen	eines	7.00 %	7.6 - 11.7 %	0.8 %	5.45 %
Zählstatistik	Präparates		(smear)	(450000cps)	(SedPräp)
C: A) + B) +	reorientierte	0.99 %	10.0 %		2.15 %
Proben-	Präparate	-	-		-
heterogenität		4.40 %	11.4 %		2.77 %
	völlig neu			10.8 %	3.59%
	präparierte			(3.5°2)	-
	Proben			6.8 %	6.5 %
				(Schiefer)	
D: A) + B) + C)	mehrere		9.0 %	15 % (0.24 °2)	10 %
+ geologischer	Proben		-	22 % (0.45 °2	(0.24°2)
Fehler	eines Auf-		12.7 %		
	schlusses				

Tab. 3: Fehlerquellen und ihre Auswirkung auf die Reproduzierbarkeit der Halbhöhenbreiten. Angaben in 1 (%-Standardabweichung).

2.1.12 Möglichkeiten und Grenzen der Methode

In tonreichen Metasedimenten des sehr niedriggradigen Metamorphosebereiches (Diagenese bis Epizone) läßt sich die Illitkristallinität, unter Beachtung bestimmter Voraussetzungen, für eine relative, aber nicht für eine absolute Abstufung der thermischen Metamorphose einsetzen.

Die Illitkristallinität basiert auf der Umwandlung der metastabilen Tonminerale (< 2 μ m) der Smektit-Gruppe in metastabile Illit-Modifikationen bzw. in den stabilen "metamorphen" Muskovit. Durch diese unter Gesteinsbedeckung irreversiblen Reaktionen werden mit zunehmender Metamorphose Kationen im Kristallgitter ausgetauscht und Dislokationen behoben. Dabei nimmt der Basisgitterabstand ab, bis er im Endglied Muskovit sein Minimum erreicht hat. Dieser Prozeß wird im wesentlichen von der Temperatur, der Gesteinszusammensetzung, dem offenen Porenraum und der Zusammensetzung des vorhandenen Fluides gesteuert. Deshalb sollten nicht die Illitkristallinitäten von Tonsteinen mit denen von Sandsteinen oder die von Tonschiefern mit denen von Grauwacken verglichen werden. Auch ist der Vergleich der Illitkristallinitäten von kalkigen mit kieseligen Tonschiefern aufgrund des unterschiedlichen Stoffbestandes problematisch.

Die Illitkristallinität ist ein Maß für die Größe der Kristalldomänen und deren Defekte. Da bei der Aufbereitung die verschiedenen Smektit- und Illitmodifikationen nicht getrennt werden können, zum einen weil es die Technik nicht zuläßt, zum anderen weil die verschiedenen Phasen in den Wechsellagerungsmineralen miteinander verwachsen sind, sind in einem Präparat immer verschiedene Modifikationen enthalten. Dazu gehören der detritische Altbestand, die diagenetisch-metamorphen Neubildungen und die durch Verwitterung alterierten Illite. Die aus einem Röntgendiffraktogramm ermittelte Halbhöhenbreite (FWHM = volle Breite bei halbem [Intensitäts-] Maximum) ist somit ein Mischwert, der sich aus der Überlagerung von RDA-Peaks aus unterschiedlichen Illitgenerationen zusammensetzt.

Generell nimmt der Einfluß des Detritus auf die Illitkristallinität mit abnehmender Korngröße ab. Kleinere Körner bieten eine relativ größere Oberfläche und sind somit anfälliger für diagenetische Einflüsse, die zu einer Auflösung, einer Überwachsung oder einer Rekristallisation der Tonminerale führen können. Größere detritische Muskovite sind wesentlich stabiler und können bis in den epizonalen Bereich erhalten bleiben. Deshalb ist es notwendig, unverwitterte Proben mit möglichst wenig erkennbarem Detritus zu verwenden. Um die Illitkristallinitäten vergleichen zu können, ist es vorteilhaft, wenn die Proben eine ähnliche Lithologie besitzen und, wenn möglich, aus derselben stratigraphischen Einheit stammen.

Die Aufbereitung der Gesteine hat schonend nach den Richtlinien des IGCP Projektes 294 (KISCH, 1991) zu erfolgen. Hierbei ist es wichtig, für die Proben die notwendigen und optimalen Arbeitsschritte auszuwählen und diese exakt zu befolgen. Dies gilt auch für die Durchführung der Präparation und für die Einhaltung der Meßbedingungen:

Eine gleichbleibend gute Texturierung und eine definierte Belegdichte der Meßpräparate sind wichtige Voraussetzungen für einen Vergleich der Ergebnisse. Vor allem größere Abweichungen in der Belegdichte können zu weit streuenden Meßwerten führen (Kapitel 2.1.11.1B).

Unterschiedliche Dispersionsverfahren können ebenfalls, je nach Dauer und Verfahren, einen großen Einfluß auf die Illitkristallinität haben. Das H_2O_2 sollte nur so lange einwirken, bis die sichtbare Oxidation abgelaufen ist. Steht die Tonsuspension länger mit dem H_2O_2 in Verbindung, so kann sich die Illitkristallinität erheblich verschlechtern (Kapitel 2.1.11.1A). Es ist nicht geklärt, inwieweit die Anwendung von H_2O_2 das Kristallgitter der Illite verändert, d.h. die Illitkristallinität nachträglich künstlich verschlechtert. Ein Vergleich der 10 Å Peak-Intensitäten der verschiedenen Dispersionsverfahren zeigt, daß die unbehandelten Proben die niedrigsten Intensitäten und die mit H_2O_2 behandelten Proben die höchsten zeigen. Die
Proben, die eine Ultraschallbehandlung erfahren haben, liegen mit ihren Werten relativ nahe an den Intensitäten der mit H_2O_2 dispergierten Proben. Die Untersuchungen in Kapitel 2.1.11 lassen den Schluß zu, daß der Einsatz von Ultraschall als Dispersionsverfahren sich besser eignet als der von H_2O_2 , weil der Ultraschall zwar die Kornaggregate zerkleinert, nicht aber die Illite künstlich verändert.

Für die Analyse der Illitkristallinität wurde in den Untersuchungen dieser Arbeit das Ultraschall-Dispersionsverfahren als Standardverfahren verwendet. Es mußte jedoch aus zwei Gründen auf Proben zurückgegriffen werden, die mit H_2O_2 dispergiert wurden: Zum einen wurde im W des Arbeitsgebietes Probenmaterial verwendet, das schon für vorhergehende Untersuchungen mit H_2O_2 dispergiert wurde. Zum anderen wurde bei sehr geringer Probenmenge auf die H_2O_2 -Dispersion zurückgegriffen, um eine größere Ausbeute an Illiten der Tonfraktion zu erhalten. Die in diesen Proben gemessene Illitkristallinität mußte danach mit folgender Formel auf den Illitkristallinitäts-Standard korrigiert werden, der auf Proben basiert, die mit dem Ultraschallverfahren behandelt wurden (Abb. 19c).

$$FWHM_{(Ultraschall)} = 0.90052 * FWHM_{(H2O2)} + 0.0079$$

Die verschiedenen Quellen, die für eine Variation der Meßergebnisse am Röntgendiffraktometer verantwortlich sind, wurden eingehend in Kapitel 2.11.1 beschrieben.

Bei gleichbleibender Qualität der Probenaufbereitung und Präparatherstellung summieren sich alle Fehlerquellen in der geologischen Varianz. Diese erreicht für die Halbhöhenbreite eine Standardabweichung von 10 Prozent, bei KRUMM (1992) sogar über 22 Prozent. Aufgrund der großen Varianz ist es notwendig, diese Methode statistisch zu betreiben.

Mit Hilfe des Esquevin-Index konnte gezeigt werden, daß in den Illiten der untersuchten Tonschiefer der Al- auf Kosten des Fe / Mg-Gehaltes mit zunehmender Illitkristallinität steigt (Kapitel 2.1.10.1B). Dies ist ein indirekter Hinweis für die überwiegend diagenetischmetamorphe Neubildung der untersuchten Tonminerale. Es kann folglich mit einem geringen Anteil an Detritus in der Tonmineralfraktion der Meßpräparate gerechnet werden.

2.2 Chloritkristallinität (CK)

Die Chloritkristallinität ist, wie auch die Illitkristallinität (IK), ein temperaturabhängiger Parameter für den niedrigstgradigen Metamorphosebereich. Sie ist als Halbhöhenbreite der röntgendiffraktometrisch ermittelten 14 Å- $(d_{(001)})$ und 7Å- $(d_{(002)})$ Chloritpeaks definiert. Die diagenetische Bildung und Entwicklung des Chlorits verläuft analog der des Illits (ÁRKAI, 1991). Entsprechend der Illitkristallinität nehmen mit steigendem Metamorphosegrad die Werte der Chloritkristallinität ab (z.B. MERRIMAN et al., 1990). Nach ÁRKAI et al. (1995) wird der Grund in einer zunehmenden Durchschnittsgröße der Chlorit-Gitterdomänen und der damit einhergehenden Abnahme der Gitterverformung sowie einer zunehmenden Homogenisierung der Chloritzusammensetzung gesehen.

Die Entwicklung der Illit- (10 Å) und der Chloritkristallinität (14 Å und 7 Å) während der Anchimetamorphose resultiert nach YANG & HESSE (1991) aus einer abnehmenden Zahl quellfähiger Lagen in diesen Mineralen. Die Wechsellagerungsminerale sollen im Gegensatz zum Chlorit-14 Å-Peak auf den Chlorit-7 Å-Peak nur einen geringen Einfluß haben. ÁRKAI et al. (1995) unterteilten die polyphasen Chlorite generell in zwei Entwicklungskategorien. Die Chlorite mit verwachsenen diskreten Phasen oder Wechsellagen werden als Entwicklungstyp I bezeichnet und dem diagenetischen Metamorphosebereich zugeordnet. Die diskreten Chlorite dagegen werden als Typ II bezeichnet und sollen der Anchi- bis Epizone entsprechen.

Die Chloritkristallinität wurde mittlerweile von verschiedenen Bearbeitern bestimmt und mit den Werten der Illitkristallinität aus den gleichen Proben verglichen (u. a. SCHAER & PERSOZ, 1976; BRAUKMANN, 1984; ÁRKAI, 1991; ÁRKAI et al., 1995; WARR, 1996). Dabei wurde generell eine gute lineare Korrelation zwischen beiden Methoden festgestellt. Die Chloritkristallinität läßt sich zwar gut mit der Illitkristallinität korrelieren, reagiert aber auf die Metamorphoseentwicklung wesentlich unsensibler als der Kübler-Index (ÁRKAI et al., 1995). Da bei der Interpretation der Illitdaten gewisse Unsicherheiten bestehen können (z. B. durch das Vorkommen von detritischen di- und trioktaedrischen Glimmern, von paragonitischen Phasen oder von Margarit und Pyrophyllit), schlugen ÁRKAI et al. (1995) vor, an den jeweiligen Probenpräparaten eine Bestimmung der Illit- und Chloritkristallinität gleichzeitig vorzunehmen. Weichen die analysierten Kristallinitäten des Präparats stark vom allgemeinen Trend ab, so sollte die Probe verworfen werden, da ein unbekannter weiterer Faktor eine unterschiedliche Entwicklung der Chlorit- bzw. Illitkristallinität verursacht hat. In dieser Arbeit wurden aus allen Röntgendiffraktogrammen, die für die Illitkristallinität erstellt wurden, gleichzeitig die Halbhöhenbreiten der 14 Å- und 7 Å-Chlorite bestimmt (siehe Tabelle V und VI im Anhang). Dies ermöglichte einen direkten Vergleich der Halbhöhenbreiten der Chlorite mit denen der Illite aus demselben Meßprofil. Für die Methodik bedeutet das, daß die Gesteinsproben und deren Aufbereitung, die Anfertigung der Meßpräparate, die apparativen Meßbedingungen, die internen Standards bis hin zu den erstellten Röntgendiffraktogrammen identisch sind.

2.2.1 Reproduzierbarkeit der Chloritkristallinitäts-Messungen

Alle Röntgendiffraktogramme der untersuchten Proben zeigen einen 14 Å-Chloritpeak, der gegenüber dem 7 Å-Chlorit eine deutlich geringere Intensität und eine deutlich breitere Basis aufweist. Daraus resultiert eine ungenauere Analyse des 14 Å-Chlorits. In dem Diagramm in Abbildung 22 sind die Kristallinitäten der 7 Å-Chlorite gegenüber den 14 Å-Chloriten in einem Bereich kleiner 0,5 ° 2 dargestellt. Dieser Bereich wurde für alle in diesem Kapitel aufgenommenen Diagramme gewählt, um die Darstellungen besser miteinander vergleichen zu können. Trotz des wesentlich diffuseren 14 Å-Chloritpeaks ergibt sich eine gute lineare Korrelation mit generell größeren Halbhöhenbreiten der 14 Å-Chlorite. Gleichzeitig ist mit zunehmender Halbhöhenbreite eine größere Streuung der Meßwerte zu beobachten.

Abb. 22: Korrelationsdiagramm zwischen den Halbhöhenbreiten (FWHM) des 7 Å-Chlorits und des 14 Å-Chlorits im luftgetrockneten Zustand.

Um mögliche Einflüsse der unterschiedlichen Dispersionsmethoden H_2O_2 , Ultraschall- (US) und ohne Behandlung (NADA) - siehe Kapitel 2.1.8 - auf die Chloritkristallinität feststellen zu können, wurden die Kristallinitäten der 7 Å- und 14 Å-Chlorite nach ihrer unterschiedlichen Aufbereitung in zwei Blockdiagrammen dargestellt (Abb. 23 + 24). Die Auswirkungen auf das relative Verhältnis der Halbhöhenbreiten durch die verschiedenen Dispersionsmethoden sind für den 7 Å- und 14 Å-Chlorit und auch für den 10 Å-Illit (vergl. Kapitel 2.1.11.1, Abb. 18) gleich. Die Diagramme zeigen, daß die H_2O_2 -Halbhöhenbreiten generell größer sind als die US- bzw. NADA-Halbhöhenbreiten. Noch größer wird der Unterschied durch eine H_2O_2 -Langzeitbehandlung. Hingegen gibt es zwischen den US- und NADA-Halbhöhenbreiten nur geringe Abweichungen. Die Vergleiche lassen den Schluß zu, daß die hier verwendeten unterschiedlichen Aufbereitungsmethoden auf die Kristallinität von Illit und Chlorit die gleichen Auswirkungen haben.

Abb. 23: 7 Å-Chlorit - Halbhöhenbreite (FWHM) in Abhängigkeit der unterschiedlichen Dispersionsverfahren. n = 23; $lz = Langzeitbehandlung mit H_2O_2$.

In dieser Arbeit wurden die Kristallinitätswerte der 10 Å-Illite und 7 Å- bzw. 14 Å-Chlorite, die mit Ultraschall behandelt wurden verwendet. Die Meßwerte der Proben, die nur mit H_2O_2 dispergiert wurden, wurden mit den folgenden Formeln in entsprechende US-Chlorit-kristallinitäten umgewandelt (Abb. 25a + b):

$$FWHM_{(7\text{\AA}-US)} = 0,80134 * FWHM_{(7\text{\AA}-H2O2)} + 0,02774$$
$$FWHM_{(14\text{\AA}-US)} = 0,78348 * FWHM_{(14\text{\AA}-H2O2)} + 0,02901$$

Abb. 24: 14 Å-Chlorit-Halbhöhenbreite (FWHM) in Abhängigkeit der unterschiedlichen Dispersionsverfahren. n = 23; $lz = Langzeitbehandlung mit H_2O_2$.

Abb. 25b

Abb. 25a + b: Korrelation der Halbhöhenbreiten für US mit H₂O₂ für den 7 Å-Chlorit (a) und den 14 Å-Chlorit (b).

2.2.2 Vergleich zwischen Chlorit- und Illitkristallinität

Die Vergleiche von Illit- und 7 Å- bzw. 14 Å-Chloritkristallinitäten ergeben jeweils eine sehr gute lineare Korrelation (Abb. 26a und b). ÁRKAI et al. (1997) dokumentierten, daß die Chlorit-, wie auch die Illitkristallinität im wesentlichen durch die Kristallitgröße beeinflußt werden. Die Größe ist der wesentliche Faktor, der sich in der Kristallinität der beiden Minerale ausdrückt. Die Domänengröße nimmt in beiden Mineralen mit steigendem Metamorphosegrad zu. Aufgrund der guten Korrelation von Illit- und Chloritkristallinität ist es daher möglich, auch deren Metamorphosegrenzen zu korrelieren.

Das Diagramm (Abb. 26b) zeigt trotz guter Korrelation eine relativ breite Streuung der Werte, besonders im niedrigstgradigen Metamorphosebereich. Im Vergleich zu den 10 Å-Illit- und 7 Å-Chloritpeaks hat der 14 Å-Chloritpeak eine geringe Intensität. Das führt zu einer relativ ungenauen Bestimmung der Halbhöhenbreiten. Der 7 Å-Chloritpeak hingegen zeigt in den Röntgendiffraktogrammen eine ähnlich gute Intensität wie der 10 Å-Illitpeak. Hier ist die Bestimmung der Halbhöhenbreite wesentlich genauer. Für die Korrelation der beiden Diagramme wurden Proben, die einen zu schwachen Illit- bzw. Chloritpeak zeigten, eine deutliche Überlagerung verschiedener Mineralphasen abbildeten oder völlige "Ausreißer" darstellten nicht berücksichtigt. Letztere zeigen nach ÁRKAI et al. (1995) einen weiteren unbekannten Einfluß auf die Kristallinitäten und sollten aussortiert werden. Aufgrund der Ungenauigkeit der Halbhöhenbreiten der 14 Å-Chlorite wurden diese zur Metamorphosebestimmung nicht weiter herangezogen. In der Tabelle 4 sind die korrelierten "Frey"- und CIS-Metamorphosegrenzen dargestellt. Die Metamorphosegrenzen für den 7 Å-Chlorit liegen in beiden Fällen bei etwas niedrigeren Werten als für den 10 Å Illit.

Abb. 26b

Abb. 26a + b: Korrelationsdiagramm der Halbhöhenbreite (FWHM) des 10 Å-Illits gegen die des 7 Å-Chlorits (a) und des 14 Å-Chlorits (b)

Untersuchungen von MERRIMAN et al. (1995) an metamorphen Illiten und Chloriten zeigen, daß während der höheren Diagenese das Kristallwachstum der Illite und Chlorite im Wesentlichen von deren Polytypie und Phasenumwandlung gesteuert wird. Das Ergebnis ist eine gleiche Kristallgrößenverteilung, die den typischen Ostwald-Reifungskurven entspricht. Unter anchizonalen und epizonalen Bedingungen wächst der Illit schneller als der Chlorit. Das Kristallgitter des Illits kann die tektonische Strainenergie besser aufnehmen und kann sich von der Subkornbildung schneller erholen als das des Chlorits. die Kristallit-Dickenverteilung der Illite entspricht jetzt nicht mehr der typischen Ostwald-Reifung. Die Chlorite, die unter denselben Bedingungen wie die Illite wachsen, entwickeln bei hohen Strainraten Subkorngrenzen, die sich dann bei niedrigen Strainraten nur zum Teil wieder erholen. Die Dislokationen im Kristallgitter bleiben deshalb erhalten, und die Kristallitdicke ist folglich kleiner als die der Illite. Diese Unterschiede im straininduzierten Kristallwachstum bei einer niedriggradigen Metamorphose, die eng an eine Schieferungsentwicklung gekoppelt ist, resultiert in deutlichen Unterschieden in der Illit- und Chloritkristallinität (MERRIMAN et al., 1995).

Metamorphose	10 Å-Illit ''Frey''- Standard (Δ°2Θ)	10 Å-Illit CIS-Standard (Δ°2Θ)	7 Å-Chlorit ''Frey''- Standard (Δ°2Θ)	7 Å-Chlorit CIS-Standard (Δ°2Θ)
niedrige Diagenese	> 0,54	> 0,44	> 0,46	> 0,38
hohe Diagenese	0,39 < 0,54	0,35 < 0,44	0,34 < 0,46	0,31 < 0,38
niedrige Anchizone	rige izone 0,32 < 0,39 0,30 < 0,35		0,28 < 0,34	0,27 < 0,31
hohe Anchizone	0,24 < 0,32 0,25 < 0,30		0,22 < 0,28	0,23 < 0,27
Epizone	Epizone < 0,24		< 0,22	< 0,23

Tab. 4: Metamorphosegrenzwerte der 10 Å-Illit- und 7 Å-Chloritkristallinitäten für den "Frey"- und den CIS-Standard.

Im Arbeitsgebiet zeigt die mit Hilfe der RDA ermittelte Chloritkristallinität generell eine deutlich geringere Halbhöhenbreite (Abb. 26a) als die der Illite. Die Kristallinität der Illite und Chlorite gibt indirekt deren Kristallitgröße an (ÁRKAI et al., 1997). Daraus läßt sich schließen, daß die Chlorite im Arbeitsgebiet eine größere Kristallitgröße besitzen. Das wiederum würde nach der Untersuchung von MERRIMAN et al. (1995) für den Bereich der FQZ bedeuten, daß dort kein straininduziertes Wachstum der Tonminerale durch die Halbhöhenbreiten abgebildet wird und somit die Kristallinitäten im wesentlichen durch eine deformationsfreie Temperung eingestellt wurden. Jedoch geht aus der Literatur nicht hervor, wie sich das Verhältnis von Illit- zu Chloritkristallinität bei strainfreiem bzw. straininduziertem Kristallwachstum in absoluten Werten unterscheidet.

2.3 6d_(33-1,060)-Geobarometer

Der 6 x d_(33-1,060)-Parameter ist ein Kristallgitterparameter des kaliumreichen $2M_1$ -Illit / Muskovit. Er kann mit Hilfe eines Röntgendiffraktometers bestimmt werden. Ursprünglich trug dieser Geobarometer die Bezeichnung b₀, da er den Gitterabstand der Kristallfläche d₍₀₆₀₎ abbilden sollte (z.B. CIPRIANI et al., 1968). FREY et al. (1983) hatten jedoch beanstandet, daß im Röntgendiffraktogramm für den $2M_1$ -Muskovit der d₍₀₆₀₎-Peak nicht eindeutig vom d₍₃₃₋₁₎-Peak unterschieden werden kann. In einer Untersuchung von RIEDER et al. (1992) wurde darauf hingewiesen, daß diese Peaküberlagerung keine ernsthafte Verfälschung des b₀-Wertes bedeutet. Sie empfahlen jedoch, den Ausdruck b₀ durch d_(33-1,060) zu ersetzen. Da der b₀-Wert aber durch die Multiplikation von 6 x d_(33-1,060) errechnet wird, wurde der Parameter in dieser Arbeit als 6d_(33-1,060) bezeichnet.

CIPRIANI et al. (1968) zeigten, daß es möglich ist, den relativen Celadonit- bzw. Phengitgehalt des Muskovits mit diesem Kristallgitter-Parameter zu bestimmen. Daraufhin stellten CIPRIANI et al. (1971) fest, daß unter grünschieferfaziellen Bedingungen der Celadonitgehalt im kaliumreichen Hellglimmer mit abnehmendem Druck abgebaut wird. Sie hielten andere Einflüsse wie Temperatur und die Gesamtzusammensetzung des Gesteins für vernachlässigbar. Deshalb hielten sie es für möglich, den relativen Metamorphosedruck über den Vergleich der $6d_{(33-1,060)}$ -Werte der Kalium-Hellglimmer zu bestimmen. SASSI (1972) gelang es, Muskovite und Phengite anhand des $6d_{(33-1,060)}$ - Parameters zu unterscheiden. SASSI & SCOLARI (1974) konnten mit Hilfe dieses Parameters im grünschieferfaziellen Metamorphosebereich Faziesgebiete entsprechend ihrer unterschiedlichen Metamorphosedrucke bestimmen. PADAN et al. (1982) wendeten diese Methode auch an subgrünschieferfaziellen Gesteinen erfolgreich an. Sie empfahlen, den Metamorphosebereich der mittleren Anchizone nicht zu unterschreiten.

Bei gleichbleibender Temperatur wird durch die Zunahme des Druckes im Kristallgitter des Illits / Muskovits, im wesentlichen auf den Oktaederplätzen, Al⁺³ durch Fe⁺² und Mg⁺² ausgetauscht. Entsprechend wird Al⁺³ auf den Tetraederplätzen von Si⁺⁴ substituiert, um die Ladung wieder auszugleichen. Daraus resultiert eine Zunahme des Celadonitgehaltes. GUIDOTTI & SASSI (1986) bestimmten für Phyllite der Grünschieferfazies die nach den von MIYASHIRO (1961) definierten Faziesgrenzen, wie folgt:

		$6d_{(33-1,060)} < 9.000 \text{ Å}$	=	Niederdruck-Faziesserie	$(> 35 \ ^{\circ}C \ km^{-1})$
9.000 Å	<	$6d_{_{(33-1,060)}} < 9.040 \text{ Å}$	=	Mitteldruck-Faziesserie	(25 - 35 °C km ⁻¹)
9.040 Å	<	6d _(33-1,060)	=	Hochdruck-Faziesserie	$(< 25 \ ^{\circ}C \ km^{-1})$

Mit Hilfe ihrer $6d_{(33-1,060)}$ -Daten konstruierten GUIDOTTI & SASSI (1986) ein empirisches Druck-Temperatur-Diagramm. Sie wiesen jedoch darauf hin, daß das Diagramm aufgrund der schwächeren Datendichte im höhermetamorphen Bereich nur zur qualitativen Analyse verwendet werden sollte.

Die Anwendung der Methode wird von GUIDOTTI & SASSI (1976) bestimmten Einschränkungen unterworfen: Am besten sind phyllitische Gesteine mit der Mineralvergesellschaftung von Mu - Pa - Qz, Mu - Pa - Ab - Qz oder Mu - Ab - Kf - Qz geeignet, welche die KNASH Grenzvergesellschaftungen darstellen. Es ist aber auch die Verwendung von Proben mit der wesentlich häufiger vorkommenden Mineralvergesellschaftung von Muskovit + Albit + Quarz (± Chlorit ± Kalzit ± Graphit) erlaubt. Die Vergesellschaftung von Mu - Ab -

Qz ist abhängig von der Gesteinszusammensetzung. Deshalb wurden weitere Einschränkungen vorgegeben. Die zu untersuchenden Metapelite sollten kein Paragonit, Margarit oder Pyrophyllit enthalten, dafür reichlich Muskovit. Kalifeldspat sollte fehlen, da sonst der $6d_{(33-1,060)}$ -Wert zu hoch liegen würde. Proben mit sehr hohem Quarz- und / oder Chloritgehalt sollten ebenfalls nicht verwendet werden, da in diesem Material der Anteil an Al_2O_3 am Gesamtgestein zu gering sei und deshalb der Muskovit einen erhöhten Celadonitgehalt haben würde. Karbonatreiche Proben sollten gemieden werden, weil hier der $6d_{(33-1,060)}$ -Wert zu niedrig sei. Hämatit- und magnetitreiche Proben sollten ausgeschlossen werden, da sie einen erhöhten Fe⁺³ Gehalt in den Muskoviten verursachen würden. FREY (1987) merkte an, daß das Mineralgleichgewicht, das den Celadonit-Gehalt im Muskovit kontrolliert - also auch $6d_{(33-1,060)}$ - durch Dehydrationsreaktionen hervorgerufen wird, die von der Aktivität des Wassers in der fluiden Phase abhängen.

Die 6d_(33-1,060)-Methode ist eine statistische Methode. Deshalb ist eine große Anzahl von Messungen einer Population nötig, um eine qualitative Aussage über die Druckverhältnisse machen zu können. Die Messungen der Populationen werden üblicherweise in einer kumulativen Häufigkeitskurve nebeneinander dargestellt. Der Mittelwert aller Messungen einer Metamorphosefazies ist entscheidend SASSI & SCOLARI (1974).

Detritische Glimmer können, wie bei der Illitkristallinität, auch das Ergebnis dieser Methode verfälschen. Der $d_{(33-1,060)}$ -Gitterparameter liegt senkrecht zum Basisgitterabstand $d_{(002)}$, der zu Illitkristallinitäts-Messungen verwendet wird. Daraus folgt, daß texturierte Sedimentations-

Präparate für die Messung völlig ungeeignet sind. Gesteinsanschliffe, die senkrecht zur Foliation angefertigt werden, haben zwar die richtige Schnittlage, enthalten aber einen gewissen Anteil an Detritus und sind deshalb für geobarometrische Bestimmungen nicht geeignet. Um die detritische Komponente gering zu halten, wurden texturfreie RDA-Pulverpräparate mit einer Kornfraktion < 2 μ m hergestellt. Diese Kornfraktion wurde auch zur Bestimmung der Illit- und Chloritkristallinität verwendet. Die Analysen wurden mit dem Siemens D500 Röntgendiffraktometer durchgeführt. Es wurde der Winkelbereich von 59 bis 63 °2 im Stepscan-Verfahren gemessen, mit einer Zeitkonstante von 9,6 Sekunden. Alle anderen apparativen Bedingungen entsprachen den im Kapitel 2.1.9 beschriebenen.

2.4 Inkohlung

Dipl.-Geol. S. Herlitzius (Rheinberg) stellte mir stellte mir freundlicherweise die Vitrinitreflexions-Werte seiner Proben aus dem Frankenwald, die aus seinem nicht beendeten Dissertations-Projekt (Prof. Dr. W. Franke, IGL, Justus-Liebig-Universität Giessen) stammen, zur Verfügung. Er war für die Probenahme, Aufbereitung und Präparatherstellung verantwortlich. Die Vitrinitreflexions-Messungen wurden von S. Herlitzius am Geologischen Institut der Georg-August-Universität in Göttingen durchgeführt. Das Projekt wurde finanziell von der DFG unterstützt.

2.4.1 Vitrinitreflexion

Organisches Material reagiert sehr sensibel auf ein Ansteigen der Temperatur und weniger empfindlich auf den des Druckes im umgebenden Gestein. Mit Hilfe von Licht-Reflexionsmessungen kann der Reife- oder Inkohlungsgrad der organischen Partikel bestimmt werden. Der Inkohlungsgrad nimmt mit zunehmender Diagenese zu und ist ein irreversibler Prozeß. Er ist in erster Linie von der maximalen Temperatur und der Erwärmungsdauer abhängig.

Das organische Material in Sedimenten und Kohlen ist heterogen zusammengesetzt. Die Mazerale in den Kohlen können als Analogie zu den Mineralen in den anorganischen Gesteinen betrachtet werden. Ein Mazeral ist definiert als ein mikroskopisch identifizierbare,r in sich einheitlicher Bestandteil, der keine Mineralsubstanzen enthält (International Handbook of Coal Petrography, 1971, 1985). Die Mazerale werden in drei Hauptgruppen, die Vitrinite (Huminite), die Liptinite und die Inertinite eingeteilt. Die Gruppen werden nach den unterschiedlichen Ausgangsmaterialien, den verschiedenen Erhaltungsformen und den unterschiedlichen chemischen und physikalischen Eigenschaften unterteilt. Ausgangsprodukte der Liptinite sind z. B. Wachse und Cuticulen, der Vitrinite Zellulose und Lignin und der Inertinite oxidierte kohlige Bestandteile. Generell führt die zunehmende Aromatisierung von organischen Makromolekülen und die Kondensation der aromatischen Gruppen zu einer Erhöhung der Vitrinit-Reflexion. Die verschiedlichen Inkohlungspfad (Abb. 27). Vitrinit zeigt im Gegensatz zu Liptinit und Inertinit einen linearen Inkohlungspfad und wird deshalb zur Bestimmung des Inkohlungsgrades verwendet.

Die Reflexion wird definiert als die prozentuale Intensität eines Lichtstrahls, der von einer polierten Oberfläche reflektiert wird (BUSTIN et al., 1989). In der Praxis wird das von einem

Mazeral reflektierte Licht mit einem Fotomultiplier gemessen und mit dem reflektierten Licht eines optischen Standards mit bekannter Reflexion verglichen. Die Reflexion in Öl eines Mazerals bezieht sich auf die Refraktions- und Absorptionsindizes der Mazerale nach der Gleichung von BEER (in TEICHMÜLLER, 1987):

$$R = \frac{(n - n_0)^2 + n^2 k^2}{(n + n_0)^2 + n^2 k^2}$$

Wobei n und k die Refraktions-(Brechungs-) und Absorptionsindizes eines Mazerals sind und n_0 der Refraktionsindex (Brechungsindex) des Immersionsöls. Der Refraktionsindex n ist eine Funktion der Atomdichte und nimmt mit dem Grad der Aromatisierung zu. Der Absorptionsindex k ist abhängig von der Zahl der freien Elektronen, da deren Beweglichkeit die Absorption von elektromagnetischen Wellen erleichtert. Die Beweglichkeit der Elektronen nimmt der Größe der aromatischen mit Lamellen und Komplexe, d.h. dem Grad der Kondensation zu (TEICHMÜLLER, 1987).

Vitrinit verhält sich optisch anisotrop. Mit zunehmender Inkohlung steigen der Aromatisierungs-, der Kondensierungsund der Ordnungsgrad der aromatischen Ringe der Vitrinite parallel zur Einbettungsebene. Bei einfachem Über-

Abb. 27: Inkohlungspfade dargestellt als Maximum-Reflexionswerte für die drei Mazeralgruppen (aus TEICHMÜLLER, 1987).

lagerungsdruck entstehen optisch uniaxial anisotrope Vitrinite. Bei scherender Verformung hingegen bilden sich optisch biaxial anisotrope Vitrinite aus, die offensichtlich von der Orientierung des Spannungsfeldes abhängig sind (siehe LEVINE & DAVIS, 1984). Daraus folgt ein maximales Reflexionvermögen (% R_{max}) des Vitrinits parallel zur Foliation in x-Richtung des Strain-Ellipsoids und ein minimales Reflexionsvermögen (% R_{min}) senkrecht dazu. Zur Bestimmung der Vitrinit-Reflexion werden 100 Messungen je Präparat empfohlen, mit 50 Messungen je Präparat ist jedoch schon eine ausreichende statistische Sicherheit gegeben. Die Vitrinit-Reflexion kann entweder mit der maximalen Reflexion in polarisiertem Licht an gerichteten Vitriniten oder mit der durchschnittlichen Reflexion in unpolarisiertem Licht an unorientierten Vitriniten bestimmt werden. Die erste Meßmethode ist exakter, eignet sich aber nur bei Anschliffen mit ausreichend großen (2µm) Kohlepartikeln. Die zweite Methode wird im wesentlichen an Proben angewendet, die nicht ausreichend und zu kleine Kohlepartikel führen. Hier wird die kohlige Substanz angereichert, und die Körner werden un-orientiert in ein Präparat eingebettet.

2.4.2 Probenahme, Aufbereitung und Messung (S. Herlitzius)

Für diese Arbeit wurden von S. Herlitzius Kulm-Tonschiefer westlich der Frankenwälder Querzone beprobt. Die Probenpunkte waren mit denen der Illit- und Chlorit-Kristallinität bzw. denen der Druckparameter identisch. Damit war ein direkter Vergleich der Ergebnisse möglich. Der Anteil der organischen Substanz war in allen Proben so gering, daß Konzentrate hergestellt werden mußten.

Zur Probenaufbereitung wurden die Tonschiefer im Backenbrecher auf 2 bis 3 mm Größe zerkleinert. Anschließend wurden etwa 100 g einer Probe mit konzentrierter Salzsäure behandelt, nach 24 Stunden neutralisiert und dann mit konzentrierter Flußsäure versetzt. Danach wurde das Material erneut mit konzentrierter Salzsäure unter geringer Wärmeeinwirkung behandelt und nach der Neutralisation im Ultraschallbad kurz gesiebt. Das Feinstmaterial (< 3 μ m) wurde über einen Filter mit Hilfe einer Unterdruckpumpe abgezogen. Der auf den Filtern verbliebene Rest wurde in Kunstharz eingebettet, wobei auf eine möglichst planparallele Oberfläche geachtet wurde. Die Präparate wurden anschließend poliert.

Gemessen wurde die mittlere Reflexion (% R_m). Für die statistische Sicherheit der Ergebnisse der Vitrinitreflexionsbestimmung sind mindestens 50 Meßpunkte je Präparat notwendig. Diese Anzahl an Meßpunkten wurde in unseren Meßpräparaten nicht erreicht, da trotz Konzentration zu wenig meßbares Material zur Verfügung stand. Es konnten lediglich 20 bis 25 Vitrinite pro Präparat gemessen wurden. Das hat zur Folge, daß durch die wenigen Meßpunkte die statistische Genauigkeit der Vitrinitreflexionswerte stark herabgesetzt ist. Reflexionswerte, die auf weniger als 20 Meßpunkten basierten, wurden in der Auswertung nicht berücksichtigt.

3 ERGEBNISSE DER THERMO-BAROMETRISCHEN UNTERSUCHUNGEN

3.1 Illit- und Chloritkristallinität

Die 10 Å-Illitkristallinitätswerte sind in der geologischen Karte der Abb. 28 und 29 dargestellt. In Abb. 28 wurden sie nach dem "Frey"-Standard und in Abb. 29 nach dem CIS-Standard umgerechnet. Entsprechend wurden die 7 Å-Chloritkristallinitätswerte in Abb. 30 als "Frey"-Werte und in Abb. 31 Als "CIS"-Werte dargestellt. Aufgrund der besseren Übersichtlichkeit wurde darauf verzichtet, die einzelnen Meßwerte anzugeben. Sie können der Tabelle III im Anhang entnommen werden. Stattdessen wurden die Illit- und Chloritkristallinitäten den verschiedenen Metamorphosebereichen zugeordnet. Die Metamorphosestufen wurden als Kreise mit einer unterschiedlichen Füllung dargestellt. Der komplett gefüllte Kreis entspricht dem Bereich der Epizone, (Subgrünschieferfazies), eine 3/4-Füllung entspricht dem Bereich der hohen Anchizone, eine 1/2-Füllung dem der niedrigen Anchizone, eine 1/4-Füllung dem der hohen Diagenese und die nicht gefüllten (weißen) Kreise stehen als Symbol für die niedrige Diagenese. Die Grenzwerte der verschiedenen Metamorphosebereiche der Illite und Chlorite sind in Tabelle 4 aufgeführt. Die Messungen wurden für 192 Probenpunkte ausgewertet.

Generell zeigen alle Parameter mit geringen Unterschieden das gleiche Metamorphosemuster: Ein Maximum wird in der FQZ abgebildet. Nach SW nimmt die Metamorphose bis zur Diagenese im Bereich der Fränkischen Linie ab. Ausgehend von der FQZ in Richtung NE bleibt die Illitkristallinität auf einem hohen Niveau, im Grenzbereich zwischen Anchi- und Epizone, mit einem leichten Minimum im Zentrum der Ziegenrücker- und Mehltheuerer Mulde (untere bis höhere Anchizone). Südwestlich der FQZ existieren zwei starke Metamorphoseminima, eines im Zentrum der Teuschnitzer Mulde (niedrige Diagenese) und ein zweites im Zentrum der Nailaer Mulde (höhere Diagenese). Zwischen den beiden Muldenkernen, in der "Abschiebungszone" (FRANKE, 1984), steigt die Metamorphose wieder auf anchizonale Bedingungen an. Auch im direkten nördlichen Anschluß an die Münchberger Decken ist ein leichter Metamorphose ebenfalls deutlich an.

Abb. 28: Geologische Karte der FQZ mit den Metamorphosegrenzen der Illitkristallinitätswerte definiert nach dem "Frey"-Standard.

Abb. 29: Geologische Karte der FQZ mit den Metamorphosegrenzen der Illitkristallinitätswerte definiert nach dem "CIS"-Standard

Abb. 30: Geologische Karte der FQZ mit den Metamorphosegrenzen der 7 Å-Chloritkristallinitätswerte definiert nach dem "Frey"-Standard.

Abb. 31: Geologische Karte der FQZ mit den Metamorphosegrenzen der 7 Å-Chloritkristallinitätswerte definiert nach dem "CIS"-Standard.

3.2 Geobarometrische Abschätzungen (6d_(33-1,060))

In den unterkarbonischen Peliten des Arbeitsgebietes wurden die $6d_{(33-1,060)}$ -Kristallgitterflächen-Abstände an 174 Proben mit dem Röntgendiffraktometer gemessen. Der Mittelwert aller Messungen beträgt $6d_{(33-1,060)} = 8,991$ mit einer Standardabweichung von $\sigma 1 = 0,018$ (Abb. 32). Daraus ergibt sich ein einheitliches Druckverhältnis im Arbeitsgebiet. Legt man die von GUIDOTTI & SASSI (1986) erstellten Korrelationen der metamorphen Faziesbereiche von MIYASHIRO (1961) mit den $6d_{(33-1,060)}$ -Gitterwerten zugrunde, so entspricht die Metamorphose der unterkarbonischen Pelite einer Niederdruckfazies mit Drucken < 2 kbar bei Temperaturen < 300 °C (Abb. 33).

Abb. 32: Kumulative Häufigkeitskurve der 174 6d_(33-1,060)-Werte aus dem Arbeitsgebiet. Druckfelder nach GUIDOTTI & SASSI (1986).

Da der $6d_{(33-1,060)}$ -Druckparameter auf einer statistischen Auswertung basiert, sollten die Meßwerte nicht einzeln gewichtet werden. Die statistische Verteilung der Meßwerte im Arbeitsgebiet zeigt jedoch deutliche Unterschiede. Deshalb wurden die $6d_{(33-1,060)}$ -Werte den von GUIDOTTI & SASSI (1986) definierten Druckbereichen zugeordnet und auf der geologischen Karte (Abb. 34) dargestellt. In dieser Abbildung stehen die Punkte mit weißer Füllung für den Meßbereich $6d_{(33-1,060)} < 9.010$. Das entspricht Drucken im Übergangsbereich von Niedrig- zu Mitteldruck-Metamorphose oder dem Bereich darunter. Die halb und halb grau-weiße Füllung entspricht dem Mitteldruckbereich ($6d_{(33-1,060)} \ge 9.040$); siehe Kapitel 2.3.

Abb. 33: Qualitative Darstellung der Illit/Muskovit 6d_(33-1,060)-Werte im Vergleich mit einigen wichtigen Reaktionskurven in Tonschiefern (GUIDOTTI & SASSI, 1986). Gestrichelte Linien sind Kurven der 6d_(33-1,060)-Werte. Die Kurven 1 bis 4 werden wie folgt beschrieben: Die dicken, quergestreiften Linien zeichnen die Grenzen der Alumosilikate nach: Andalusit (A), Kyanit (K) und Sillimanit (S) (HOLDAWAY, 1971). Der Pfad des geothermischen Gradienten (35 °C/km) wird durch den Pfeil dargestellt. 1. Kln + Qtz = Prp + H₂O (aus Abb. 2a, GREENWOOD, 1976).
2. Prp = Al-Silikat + Qtz + H₂O (aus Abb. 2a, GREENWOOD, 1976). 3. St + Qtz + Ms = Bt + H₂O (aus Abb. 2a, GREENWOOD, 1976). 4. Maximum-Stabilität für Glaukophan (MARESCH, 1977). Hellgrau gestreiftes Feld: ungefähres Druck-Temperatur-Feld im Arbeitsgebiet, jedoch ist der subgrünschieferfazielle Metamorphosebereich in diesem Diagramm nicht geeicht.

Abb. 34: Geologische Karte mit 6d_(33-1,060)-Druckparametern auf der Grundlage der Grenzen von GUIDOTTI & SASSI (1986) in drei Faziesbereiche untergliedert.

In der FQZ und in der Ziegenrücker und Mehltheuerer Mulde dominieren die $6d_{(33-1,060)}$ -Werte der Niederdruck-Fazies. Hingegen überwiegen im Zentrum der Teuschnitzer Mulde deutlich die Werte der Mitteldruck-Fazies. Im Zentrum der Teuschnitzer Mulde sind die stratigraphisch jüngsten unterkarbonischen Einheiten des Arbeitsgebietes aufgeschlossen, die gleichzeitig die niedrigste thermische Metamorphose (Kapitel 3.1 und 3.3) und die höchsten $6d_{(33-1,060)}$ -Werte bzw. die höchsten Drucke anzeigen. Die abweichenden Werte im Kern der Teuschnitzer Mulde deuten an, daß dieser Bereich von der Temperaturanomalie nicht erfaßt wurde.

3.3 Inkohlungsmessungen

Die Vitrinitreflexions-Messungen wurden von S. Herlitzius nur an Proben der unterkarbonischen Tonschiefer des Frankenwaldes durchgeführt, da das Thüringische Schiefergebirge für westdeutsche Wissenschaftler im Untersuchungszeitraum nicht zugänglich war.

Ein direkter Vergleich zwischen Illitkristallinitäts- und Vitrinitreflexionswerten führt zu einer relativ schlechten linearen Korrelation (R = 0.58; Abb. 35). Werden jedoch die mittleren Reflexionswerte der Vitrinite (% R_m) nach den Metamorphosegrenzen von KÜBLER (1975, in ÁRKAI, 1991) den unterschiedlichen Metamorphosestufen zugeordnet, so liefern sie eine bessere Übereinstimmung (Abb. 36). Die Metamorphosegrenze der Diagenese- zur Anchizone wurde bei 2,7 % R_m definiert, die der Anchi- zur Epizone bei $4,1 \% R_m$. In Abb. 36 wurden die Diagenese- und die Anchizone nochmals in eine niedrige und hohe Stufe unter-

Abb. 35: Lineare Korrelation zwischen Illitkristallinität und Vitrinitreflexion.

teilt. Die Darstellung der verschiedenen Metamorphosezonen in Abb. 36 erfolgte entsprechend denen der Illitkristallinität in Form von unterschiedlich gefüllten Kreisen.

Die niedrigste Metamorphose wird sowohl von den Inkohlungs- als auch von den Illitkristallinitätsdaten im SW-Teil der Teuschnitzer Mulde abgebildet. Die Vitrinitreflexionswerte entsprechen hier der niedrigen bis hohen Diagenese, während sich die Illitkristallinitätswerte schon im Metamorphosefeld der hohen Diagenese und niedrigen Anchizone befinden. In den übrigen Bereichen westlich der FQZ stimmen die Metamorphoseabstufungen der Vitrinitreflexion und der Illitkristallinität relativ gut überein (vergleiche Kapitel 3.1, Abb. 28). Vom niedrigstgradigen Bereich der Metamorphosekarte im SW-Teil der Teuschnitzer Mulde in Richtung FQZ zu den höhergradigen Bereichen suggerieren die Vitrinitreflexionswerte einen Metamorphosesprung, während die Illitkristallinitäten im gleichen Profil eine kontinuierliche Zunahme der Metamorphose in Richtung FQZ bis zu epizonalen Bedingungen anzeigen. Die Vitrinitreflexionswerte sind im Anhang Tabelle VII aufgeführt.

Abb. 36: Geologische Karte mit Metamorphosestufen nach den Vitrinitreflexionsmessungen.

3.4 Diskussion der paläo-thermobarometrischen Ergebnisse

Die neuen Illit- und Chloritkristallinitäts-Untersuchungen in den unterkarbonischen Peliten der FQZ bilden im Arbeitsgebiet ein komplexes Metamorphosemuster ab. Prägend ist das Metamorphosehoch (Epizone) in der FQZ. Die Metamorphose nimmt nach SW (Fränkische Linie) auf diagenetische bis niedrig-anchizonale Bedingungen ab. Von der FQZ nach NE (Ziegenrücker und Mehltheuerer Mulde) gehen die Metamorphosewerte jedoch nur leicht zurück (Abb. 38). Wie auf den nächsten Seiten diskutiert wird, muß mit der folgenden Metamorphoseentwicklung gerechnet werden:

- Diagenese durch stratigraphische Versenkung;

- syntektonische Anchimetamorphose, z.T. erhöht durch synkinematische Granitintrusionen;

- Aufheizung durch posttektonische Magmenintrusionen.

Bei der Interpretation der Daten zur Metamorphoseabschätzung muß beachtet werden, daß das heutige Metamorphosebild aus einer Addition verschiedener Metamorphoseereignisse entstanden ist. Die Gefahr einer Verfälschung der Kristallinitätswerte durch einen Eintrag des Abriebs großer detritischer Muskovitund Chloritkörner in die gemessene Tonfraktion kann aufgrund der vorsichtigen Aufbereitung (z.B. des Verzichts auf eine Scheibenschwingmühle) als gering eingeschätzt werden (Kapitel 2.1.12). Der Esquevin-Index weist deutlich auf metamorphe Illitneubildungen hin (Kapitel 2.1.10.1).

Die relativ schlechte Korrelation der Illitkristallinitäten mit den Vitrinitreflexionswerten (Kapitel 3.3, Abb. 35) ist im wesentlichen auf die bei der Vitrinitreflexions-Messung verwendete Methodik zurückzuführen. Die Vitrinitreflexion

Abb. 37: maximale (% R_{max}), mittlere (% R_m) und minimale Reflexion (% R_{min}) in Abhängigkeit vom Wassergehalt bei höherer Inkohlung nach RAGOT (1977).

wurde an Mazeralkonzentraten gemessen, in denen die Mazerale ungeordnet in Harz eingebettet sind. In den Konzentraten kann folglich nur die "ungeordnete" mittlere Reflexion ($\% R_m$) gemessen werden. Diese ungeordnete mittlere Reflexion entspricht bis zu einem Reflexionswert von < 1 $\% R_{max}$ der maximalen Reflexion des Vitrinits. Ab einem Reflexionswert > 1 $\% R_{max}$ setzt bei den Vitriniten eine deutliche Reflexions-Asymmetrie ein, die mit steigendem Inkohlungsgrad zunimmt (TEICHMÜLLER, 1987). Hier reicht es nicht aus, die mittlere Reflexion an ungeordneten Vitriniten zu messen, da der $\% R_m$ -Wert nicht definierbar zwischen $\% R_{max}$ und $\% R_{min}$ liegt und damit je nach Inkohlungsgrad stark streuen kann (Abb. 37). Deshalb sollte zur Bestimmung des Inkohlungsgrades bei höher inkohlten Proben immer die maximale Vitrinitreflexion an orientierten Gesteinsanschliffen bestimmt werden.

Trotz der methodisch bedingten starken Streuung der ungeordneten % R_m -Werte entspricht das Metamorphosebild südwestlich der FQZ im wesentlichen dem der Illit- und Chloritkristallinitäts-Untersuchungen (vergleiche Abb. 28, 30 und 36). Aufgrund der zu ungenauen Messungen und der zu geringen Probendichte bzw. der fehlenden Messungen im östlichen Teil des Arbeitsgebietes werden jedoch die Ergebnisse der Vitrinitreflexion in diesem Kapitel nicht weiter diskutiert.

Die FQZ unterscheidet sich neben der erhöhten Metamorphose, die durch die Illit- und Chloritkristallinität gekennzeichnet ist, auch durch ihr tektonisches Inventar deutlich von ihren südwestlichen und nordöstlichen Nachbargebieten. FRANKE (1984) konnte zeigen, daß südwestlich der FQZ ein offener, aufrechter Faltenbau mit einer weitständigen Bruchschieferung dominiert. Mit der Annäherung an die FQZ fallen die Faltenachsenebenen flacher ein, und die Schieferung ist intensiver ausgebildet. Im Zentrum der FQZ liegen die Faltenachsenebenen subparallel zur flach einfallenden Hauptfoliation, die als penetrative Dachschieferung entwickelt ist. Im thüringischen Teil der FQZ konnten SCHROEDER (1958, 1966a); HEMPEL (1964), SCHWAN (1958; 1968) und MEINEL (1972) ebenfalls eine stärkere Verformung und eine erhöhte Metamorphose feststellen ("Phyllittektonik").

Im Dachschieferbruch Schmiedebach, im nördlichen Teil der FQZ, sind graphitbelegte, quarzreiche, faltenachsenflächen-parallele Scherbänder aufgeschlossen. Die Graphitbildung in Scherbändern setzt unter grünschieferfaziellen syndeformativen Metamorphosebedingungen bei etwa 300 °C ein (BUSTIN, 1983; SCHÜLLER, 1961; TAYLOR, 1971). Entsprechende Ergebnisse (250 - 350 °C, 1,5 bis 3 kbar) resultierten aus BRANDs (1980) phasenpetrologischen Untersuchungen in den devonischen Metabasiten im S-Teil der FQZ.

Der folgende Ansatz soll es ermöglichen, den Einfluß der Versenkungsdiagenese und -metamorphose, die durch die Sedimentation und eine mögliche tektonische Überlagerung

Abb. 38: Geologische Karte mit Metamorphose-Abstufungen, die mit Hilfe der Illitkristallinität bestimmt wurden. Die Metamorphosegrenzen der Kristallinitäten wurden nach dem "Frey"-Standard bestimmt. Die dünnen Linien zeigen die Oberfläche der Granite im Untergrund in 1000 m-Schritten bis maximal 5000 m Tiefe an, modelliert von SEHM et al., 1989.

verursacht wurde, und die Auswirkung der syn- und posttektonischen thermischen Metamorphose auf das heutige Metamorphosebild abzuschätzen. Die Sedimentmächtigkeit des Unterkarbons beträgt nach PFEIFFER et al. (1995) mindestens 3,6 km. BRAND (1980) schätzte im südlichen Teil der FQZ für die syntektonische Memorphose in den devonischen Metabasiten Drucke von 1,5 bis 3 kbar ab. RÖLL (1998) gibt für die devonischen Kontaktgesteine des posttektonisch intrudierten Sparnberger Granits in direkter Nachbarschaft zu Brands Untersuchungsgebiet Drucke von ≤ 2 kbar an. Eigene Druckabschätzungen an unterkarbonischen Tonschiefern ergeben für das gesamte Arbeitsgebiet relativ gleichbleibende Drucke im Niederdruck-Faziesbereich, die nach der Klassifizierung von GUIDOTTI & SASSI (1986) ≤ 2 kbar betragen (Kapitel 3.2). Folglich liegen die Drucke im Arbeitsgebiet für den Zeitraum zwischen dem syntektonischen Metamorphosemaximum und der postektonischen Granitintrusion bei ≤ 2 kbar. Gleiche Drucke bedeuten aber auch eine gleichmäßige Versenkungstiefe der unterkarbonischen Tonschiefer, die bei 2 kbar an der Basis des Unterkarbons maximal 7 km entspricht.

Die Druckabschätzungen zeigen keine Erhöhung in der FQZ. Auf ein tieferes tektonisches Stockwerk, wie es von STEIN (1988) gefordert wurde, gibt es keine geologischen Hinweise. Die Heraushebung eines tieferen Stockwerkes in der FQZ würde einen Metamorphosesprung erfordern, der nicht zu beobachten ist. Eine tektonische Überlagerung der FQZ ist ebenfalls unwahrscheinlich, weil dazu ein langer, schmaler Deckensporn nach NW aus der saxo-thuringischen Deckenfront über der FQZ herausgeragt haben müßte. Deshalb ist die Existenz eines syndeformativ erhöhten Wärmeflusses zu fordern, wie ihn bereits FRANKE (1984) postuliert hat.

Die synkinematisch erhöhte Temperatur in der FQZ kann verschiedene Ursachen haben. Eine Möglichkeit ist eine fluidgesteuerte Aufheizung der Gesteine. Jedoch ergaben geochemische Untersuchungen an Spurenelementen unterkarbonischer Tonschiefer westlich der FQZ keine Hinweise auf Fluide (BIRKELBACH, 1989). Eine syntektonische Magmenintrusion könnte ebenfalls eine Wärmequelle darstellen. Dieser Ansatz wird durch eine Modellierung der Oberfläche der Granitkörper im Untergrund der FQZ gestützt (SEHM et al. 1989). Sie modellierten auf der Grundlage von Bouguer-Schweremessungen und Bohrlochuntersuchungen einen größeren zusammenhängenden Granitkörper im Untergrund der FQZ. Da in der FQZ nur posttektonische Granite aufgeschlossen sind, muß gefolgert werden, daß diese syntektonische Intrusion bis heute nicht freigelegt wurde. Unterstützt wird diese Theorie durch den nach KROHE et al. (1994) während der variscischen Deformation intrudierten Leuchtenberger Granit, der südlich der Münchberger Decken an der Grenze Saxothuringikum / Moldanubikum aufgeschlossen ist. Die U / Pb-Zirkonalter des Leuchtenberger Granits liegen zwischen 333 ± 5 Ma (ABDULLAH et al., 1994) und 342 ± 3 Ma (KÖHLER & HÖLZL, 1996).

K / Ar-Altersdatierungen an der authigenen Illitfraktion < 0,2 μ m ergaben in der FQZ (Schigru1, Lehesten: 293,1 ± 7,1 Ma) in der Teuschnitzer Mulde (WZ 138, nördlich Förtschendorf: 311,7 ± 6,7 Ma) und in der Ziegenrücker Mulde (Döbritz 2, SE-Flanke des Schwarzburger Sattels: 291,0 ± 6,1 Ma) deutlich posttektonische Alter (NEUROTH, 1997). Die Alter entsprechen denen der posttektonischen Granite (Henneberg 299 ± 5 Ma, LOTH et al., 1997; Silberberg, 320 + 10 / -8 Ma, KUNERT et al., 1998) und sind Indiz für eine weit in die Teuschnitzer und Ziegenrücker Mulde reichende posttektonische Kontaktmetamorphose, die mit dem Granitkörper von SEHM et al. (1989) kompatibel ist. Es ist jedoch nicht bekannt, welchen jeweiligen Anteil die prä- syn- und posttektonischen Intrusionen an diesem Intrusionskörper haben.

Südwestlich der FQZ, in der Teuschnitzer Mulde, sind die niedrigst-metamorphen unterkarbonischen Tonschiefer aufgeschlossen. Diese hoch-diagenetisch bis niedrig-anchizonalen Tonschiefer wurden stratigraphisch dem oberen Kulm zugeordnet, der nach HOFMANN (1961) durch das Teuschnitzer Konglomerat nochmals unterteilt wird. Das Teuschnitzer Konglomerat ist über die gesamte Teuschnitzer Mulde zu verfolgen und zeichnet die Muldenform in etwa nach. LAMBELET et al. (1967) schätzen die heutige Mächtigkeit des Unterkarbons in der Teuschnitzer Mulde auf etwa 3,6 km. Die heutige Geländeoberfläche lag folglich bei einer Überdeckung der Kulmbasis von 7 km in einer Tiefe von etwa 3, 5 km, was selbst bei einem erhöhten geothermischen Gradienten von 40 °C / km maximal zu Bedingungen der Versenkungsdiagenese führt, die auch im oberen Oberkulm der Teuschnitzer Mulde von der Illit- und Chloritkristallinität sowie von der Vitrinitreflexion abgebildet werden (Abb. 38). Der Kern der Teuschnitzer Mulde liegt folglich außerhalb des thermischen Einflusses der FQZ. Hier ist also keine zusätzliche Wärmequelle zu erwarten. Nach NE, in Richtung auf die FQZ, nimmt die Metamorphose in der Teuschnitzer Mulde zu. Hier addieren sich die Einflüsse der nach SW abtauchenden Strukturen, die nach NE ansteigende synkinematische thermische Metamorphose und die Auswirkungen der postkinematischen Granitintrusionen in der FQZ.

Vom Kern der Teuschnitzer Mulde in Richtung NW nimmt die Metamorphose bis an den SE-Rand des Schwarzburger Sattels deutlich auf höher anchizonale bis epizonale Metamorphosebedingungen zu. Da hier die thermischen Metamorphosebedingungen wesentlich höher sind, als es die Abschätzung zur stratigraphischen Versenkungsmetamorphose erlaubt (siehe oben), kann die Metamorphosezunahme nicht alleine auf einen tieferen stratigraphischen Anschnitt zurückgeführt werden. Die erhöhte Metamorphose am SE-Rand des Schwarzburger Sattels könnte durch eine verstärkte tektonische Überlagerung durch die Ausläufer tektonischer Schuppen verursacht worden sein, die durch die Retrokeil-Tektonik der Mitteldeutschen Kristallinschwelle aktiviert wurden (F. SCHÄFER, 1997). Während im Kern des Schwarzburger Sattel Drucke von 3 bis 5 kbar bestimmt wurden (F. Schäfer, 1997), liegen die Drucke im Unterkarbon südöstlich des Schwarzburger Sattels deutlich niedriger (Kapitel 3.2). Das widerspricht jedoch einer tieferen tektonischen Versenkung. Auf die Ursache der erhöhten thermischen Metamorphose gibt es deshalb keine Hinweise.

Am SE-Rand der Teuschnitzer Mulde, in Richtung Bergaer Sattel, nimmt die Metamorphose auf niedrig-anchizonale Bedingungen zu. Diese Zunahme geht einher mit einem erneuten Anstieg des Faltenspiegels am Übergang zur NW-Flanke des Bergaer Sattels, verbunden mit einem tieferen stratigraphischen Anschnitt des Unterkarbons. In diesem, von FRANKE (1984) als Abschiebungszone bezeichneten Bereich, läßt sich die Metamorphose mit einer einfachen Versenkungsmetamorphose erklären.

Die Illit- und Chloritkristallinitätswerte des Unterkarbons in der südwestlichen Verlängerung des Bergaer Sattels, sowie in der sich südöstlich anschließenden Nailaer Mulde, zeigen eine uneinheitliche diagenetische bis anchizonale Metamorphose an, die durch keinen bekannten stratigraphischen oder tektonischen Effekt erklärt werden kann. Für eine genauere Analyse ist in diesem Gebiet eine deutlich höhere Probendichte notwendig.

Nordöstlich der FQZ, im Unterkarbon der Mehltheuerer Mulde, nehmen Illit- und Chloritkristallinität wieder von epizonalen auf anchizonale Metamorphosebedingungen ab. Diese immerhin anchizonale und nicht nur diagenetische Prägung kann damit erklärt werden, daß im Gegensatz zur Teuschnitzer Mulde alle Proben aus den Schichten des unteren Unterkarbons stammen. Folglich reicht auch hier eine rein stratigraphische Versenkung zur Erklärung des Metamorphosegrades aus.

Im nordöstlichen Teil der Mehltheuerer Mulde steigt die Metamorphose wieder auf epizonale Bedingungen an. Dieses Gebiet liegt in der Greizer Querzone, die parallel zur FQZ angelegt ist, - die ähnlich wie diese - durch erhöhte Metamorphose und stärkere tektonische Verformung geprägt wurde. In der Greizer Querzone sind phyllitische Tonschiefer mit Schieferungsqualitäten aufgeschlossen, die nach der Einteilung von MERRIMAN & PEACOR (1999) epizonalen Metamorphosebedingungen zugeordnet werden können. Die Greizer Querzone wurde von F. SCHÄFER (1997) aufgrund ihrer Strukturen und der damit einhergehnden erhöhten tektonometamorphen Prägung der NW-vergenten "Prokeil"-Tektonik zugeordnet, die vor allem die Platznahme der Münchberger Decken bewirkt hat. Die phyllitisierten Gesteine sollen als Schuppeneinheit an der Front der paläozoischen Gesteine zusätzlich akkretioniert worden sein. Damit ist zwar eine stärkere Deformation im Kulm zu erreichen, jedoch keine höhere thermische Metamorphose bei niedrigen Drucken, es sei denn, die Gesteine wurden vor der Akkretionierung einem erhöhten Wärmefluß ausgesetzt. Als Ursache kann, entsprechend der FQZ, eine syndeformativ erhöhte Temperatur durch eine Magmenintrusion gefordert werden. Aufgrund der Modellierung von SEHM et al. (1989) können - wie für die FQZ - auch für dieses Gebiet Granitintrusionen erwartet werden. Jedoch haben die aufgeschlossenen Granite bei Greiz / Neumühle ein präkarbonisches ²⁰⁶Pb / ²⁰⁷Pb Intrusionsalter (368 ± 5 Ma) geliefert (GEHMLICH et al., 1997), folglich kommen sie als Ursache der Metamorphose in den unterkarbonischen Gesteinen nicht in Frage. Es gibt aber auch keine Hinweise für eine erhöhte Fluidzufuhr. Deshalb wird auch für die Greizer Querzone eine synkinematische Granitintrusion gefordert, die noch im Untergrund verborgen ist.

Nordwestlich des Bergaer Sattels, nordöstlich der FQZ, schließt sich die Ziegenrücker Mulde an. Hier fällt auf, daß die epizonale Metamorphose aus der FQZ weit in die Ziegenrücker Mulde hineinreicht. Erst in der östlichen Hälfte der Ziegenrücker Mulde sinkt der Metamorphosegrad auf höher-anchizonale Bedingungen ab. Im Gegensatz zur Teuschnitzer Mulde im SW ist die Ziegenrücker Mulde nicht verkippt. Die Proben stammten alle aus Schichten des unteren Unterkarbons. Die stratigraphische Lage der Proben erlaubt nach meinen Abschätzungen zwar anchizonale Bedingungen, nicht aber eine höher-anchizonale oder gar epizonale Metamorphose. Im Gegensatz zur FQZ zeigt das Unterkarbon der Ziegenrücker Mulde trotz der höheren Metamorphose keine der FQZ entsprechenden tektonische Strukturen (z.B. Dachschieferung) an. Die erhöhte Metamorphose muß also vor oder nach der Faltung entstanden sein. Die einzige denkbare Wärmequelle für eine prä-kinematische Metamorphose ist der sächsische Granulit, der nach FRANKE & STEIN (1999) als 1000 °C heißer, niedrig viskoser Festkörper in den Untergrund des Saxothuringikums intrudiert ist. Der Scheitel der Granulit-Struktur liegt jedoch südlich der Ziegenrücker Mulde, am S-Rand des Bergaer Sattels DEKORP & OROGENIC PROCESSES WORKING GROUPS (im Druck). Wahrscheinlicher ist eine posttektonische Aufheizung der Ziegenrücker Mulde: in ihrem Westteil belegen einige NW-streichende basische Gänge eine gewisse magmatische Aktivität, und im Ostteil weist das Schwerebild auf einen verborgenen "Pluton von Auma" hin (LORENZ, 1957; SCHIED, 1986; SEHM et al., 1989).

4 MODELLRECHNUNGEN

Die Ergebnisse der Metamorphoseuntersuchungen aus dem ersten Teil dieser Arbeit lassen den Schluß zu, daß die thermische Anomalie in der FQZ, so wie sie heute abgebildet ist, von unterschiedlichen Metamorphoseereignissen geprägt wurde. Die Versenkungsdiagenese / -metamorphose wurde überprägt durch die variscische Deformationsphase, die mit einem erhöhten Wärmefluß in der FQZ verbunden war. Dieser folgte die posttektonische Kontaktmetamorphose, verursacht durch Granit- und Gangintrusionen in die FQZ. Der jeweilige Einfluß der verschiedenen Metamorphoseereignisse auf das heutige Metamorphosemuster läßt sich nur schwer abschätzen. Der zweite Teil der Arbeit beschreibt deshalb die Untersuchungen zum Einfluß der Granitintrusionen an dem Metamorphosebild im Arbeitsgebiet. Es wurde die Ausbreitung der Temperaturfront der abkühlenden Granitintrusion im unterkarbonischen Nebengestein berechnet und mit den Illitkristallinitätswerten verglichen. Die Modellierung soll Aufschluß über die Ausbreitung der Kontaktmetamorphose und über den Mechanismus des Wärmetransportes (überwiegend advektiv oder konduktiv) geben.

Die Berechnungen wurden von Dr. Georg Kosakowski unter der Leitung von Dr. Christoph Clauser, Geophysiker der Abteilung Geowissenschaftliche Gemeinschaftsaufgaben (GGA) des Niedersächsischen Landesamtes für Bodenforschung (NLfB) durchgeführt. Er übernahm auch die Wärmeleitfähigkeitsmessungen an den Gesteinen. Meine Aufgabe war es, den geologischen Ansatz mit den geologischen und geometrischen Parametern für die verschiedenen Modelle auszuarbeiten und aus der Illitkristallinität Metamorphose-Temperaturen abzuleiten, damit diese mit den berechneten Temperaturen verglichen werden konnten. Auf der Grundlage des "best-fit"-Modells führte ich eine EASY % R₀-Modellierung der Inkohlung durch, um sie mit den Vitrinitreflexionswerten zu vergleichen.

4.1 Umwandlung der Illitkristallinität in Paläotemperatur

Um im Arbeitsgebiet einen Vergleich zwischen den Illitkristallinitäts-Metamorphosemuster mit Modelltemperaturen zu ermöglichen, müssen die Illitkristallinitätswerte in Temperaturwerte umgewandelt werden. Da die Illitkristallinität neben der Temperatur von anderen Faktoren wie Lithologie, Gesteinsporosität, Fluidzusammensetzung, Illitchemie und untergeordnet auch Stress und Zeit abhängt (FREY, 1986), kann nur ein komplexes Modell, ähnlich dem EASY % R₀-Programm, das von SWEENY & BURNHAM (1990) für die Vitrinitreflexion entwickelt wurde, eine Umwandlung in Temperaturen ermöglichen. Ein solches Modell wurde bisher noch nicht entwickelt. Deshalb erfolgt hier eine Temperaturabschätzung auf empirischer Basis anhand von Literaturdaten. Aus einer großen Anzahl von Publikationen wurden vier Arbeiten herausgesucht, deren Temperaturabschätzungen auf verschiedenen Parametern beruhen (siehe z. B. Auflistung in KISCH, 1987). Im Gegensatz zu vielen anderen Arbeiten versuchten die unten zitierten Autoren auch Temperaturen unter- und oberhalb der Anchizone abzuschätzen. Da die Untersuchungen in verschiedenen Arbeitsgebieten mit entsprechend unterschiedlicher Lithologie und Metamorphosegeschichte durchgeführt wurden, erhöht sich die Varianz der Ergebnisse (Abb. 39).

Abb. 39: In diesem Diagramm ist aus verschiedenen Arbeiten die Halbhöhenbreite (FWHM) gegen die Temperatur (°C) aufgetragen (nähere Erläuterungen, siehe Text).

ÁRKAI (1991) untersuchte paläozoische und mesozoische Pelite im Nordosten Ungarns. Er korrelierte verschiedene Parameter, wie Illit- und Chloritkristallinität, Illit-Smektit-Umwandlungen, Vitrinitreflexionsdaten, Conodonten Farbindex und die Mineralfazies von Metabasiten. Die Temperaturgrenzen der Anchizone (200 °C bzw. 300 °C) wurden von FREY (1986) übernommen, der sie mit Fluideinschluß-Untersuchungen bestimmt hat. Die 250 °C und 350 °C Temperaturmarken wurden von ÁRKAI & FÓRTIZS (in ÁRKAI, 1991) mit Hilfe des Calcit-Dolomit-Geothermometers bestimmt.

BRAUKMANN (1984) arbeitete im Muschelkalk des Brahmsche- und Vlotho-Massivs (Rheinisches Schiefergebirge), der kontaktmetamorph überprägt wurde. Er korrelierte die Illitkristallinität mit der Vitrinitreflexion. Die Temperaturen wurden mit Hilfe des "empirischen Inkohlungs-Geothermometers" von WASSOJEWITSCH et al. (1969), des δ^{18} O-Quarz-Illit-Geothermometers, der Fluideinschluß-Untersuchungen und der Illit-Smektit-Umwandlungen abgeschätzt.

FERREIRO MÄHLMANN (1996) kartierte ein Metamorphosemuster in den karbonatischpelitischen Gesteinen des Austroalpins und in den Ophiolithen des Südpenninikums in Mittelbünden und Oberhalbstein (Schweiz). Dabei gelang es ihm, Inkohlungsparameter, Illit-Smektit-Umwandlungen, Mineralparagenesen und Illitkristallinitätswerte zu korrelieren. Die Temperaturabschätzungen erfolgten im wesentlichen über die Stabilitätsgrenzen der analysierten Minerale.

HOLL (1995) arbeitete an siliklastischen Gesteinen im Unterdevon des Rheinischen Schiefergebirges. Er korrelierte die Illitkristallinität mit der Vitrinitreflexion. Zur Temperaturabschätzung wurden verschiedene "empirische Inkohlungs-Geothermometer" von WASSOJE-WITSCH et al. (1969), TEICHMÜLLER & TEICHMÜLLER (1981) und BAKER & GOLDSTEIN (1990) verwendet.

Die Ergebnisse der einzelnen Autoren wurden im Diagramm (Abb. 39) eingetragen und die Regressionskurven für die jeweilige Studie berechnet. Aus allen Daten, die in das Diagramm einfließen, wurde eine weitere Regressionskurve ermittelt, die zur Umrechnung der Illitkristallinitäten dieser Arbeit in absolute Temperaturen (°C) diente. Zum Teil mußten die Illitkristallinitätswerte, die als relative Halbhöhenbreiten (Hb_{rel}) angegeben wurden (Weber-Index), in Halbhöhenbreiten (FWHM = Kübler-Index) umgerechnet werden. Die Hb_{rel} wurde nach der Formel von WEBER (1972) in FWHM umgerechnet:

 $FWHM_{[(001)-IIIit]} = Hb_{rel} * FWHM_{[(100)-Quarz]}$

Aus der Korrelation der Illitkristallinität mit der Temperatur (Abb. 39) ergibt sich eine nichtlineare, logarithmische Funktion:

$$FWHM = -0.8116 \log(t) + 2.24202$$

mit einem Korrelationskoeffizienten von $R^2 = 0,89$.

Bei hoher Temperatur reagiert die IK zunehmend unempfindlicher auf eine Temperaturerhöhung. In den niedrigen Metamorphosebereichen ist der geologische Fehler, z.B. durch den Einfluß des Detritus und die Illite mit wechselnden Anteilen an quellfähigen Lagen noch relativ groß. Mit zunehmender Metamorphose nimmt der Schwankungsbereich der Illitkristallinität stetig ab, aber er wird gegen den Einfluß der Temperatur unempfindlicher. Bei etwa 300 bis 350 °C ist der Illit vollständig in $2M_1$ -Muskovit umgewandelt, die Halbhöhenbreite erreicht an der Grenze der Methode ihr Minimum.

Die Fehlerbetrachtung für diese Temperaturabschätzung ist sehr schwierig. In den zitierten Arbeiten wurde keine Fehlerabschätzungen beschrieben. Deshalb wurde für die Illitkristallinität auf die Fehlerbetrachtung in dieser Arbeit (Kapitel 2.1.11) zurückgegriffen. KRUMM (1992) gibt relative Fehler von ± 15 bis 20 % an, wobei der Fehler mit schlechter werdener IK zunimmt. In der vorliegenden Arbeit beträgt der Fehler innerhalb des Aufschlußbereiches ± 10 % im epizonalen Metamorphosebereich (Tab. 3). In Abbildung 39 wurde durchgehend für die Illitkristallinität ein Fehler von ± 15 % eingesetzt.

In den zitierten Arbeiten wurden für bestimmte Werte der Metamorphoseparameter Temperaturbereiche bzw. für bestimmte Temperaturen Streubereiche für die Parameter angegeben. Daraus wurde das arithmetische Mittel und die Fehlerabweichung berechnet. In Abb. 39 wurde für die Temperatur durchgehend ein relativer Fehler von ± 15 % eingesetzt.
4.2 Modellierung der thermischen Aufheizung von Kontaktgestein durch einen abkühlenden Intrusionskörper (Modellrechnung von G. Kosakowski)

Modelliert wurde der thermische Einfluß des abkühlenden "FQZ-Intrusionskörpers" auf das Nebengestein. Das Ergebnis der Modellierung diente zum Vergleich mit den abgeschätzten Paläotemperaturen (Kapitel 4.1). Ziel der Modellierung war es, die geologische Interpretation im ersten Teil dieser Arbeit (Kapitel 3.4) mit Hilfe der in die Modellierung einfließenden physikalischen Gesetzmäßigkeiten zu überprüfen und zu verbessern.

Zur Modellrechnung wurde das mit Finiten-Elementen arbeitende Programm SHEMAT verwendet, das in CLAUSER (1988) und CLAUSER & VILLINGER (1990) detailliert beschrieben ist. Da in der FQZ keine Anzeichen für einen bedeutenden Wärmetransport über Kluftsysteme zu finden sind, wurde für die Modellierung ein quasi-poröser Rechenansatz verwendet. Das Programm erlaubt die Berechnung des instationären, gekoppelten Wärme- und Fluidtransports in porösen Medien mit anisotropen und temperaturabhängigen Parametern.

4.2.1 Modellgeometrie und Modellparameter

Der Intrusionskörper in der FQZ hat nach SEHM et al. (1989) einen nahezu symmetrischen Aufbau (Abb. 40). Die Längsachse des Körpers verläuft NW-SE, parallel zur FQZ. Die Orientierung des 2D-Modell-Profilschnittes (AB) ist NE-SW, 90° zur FQZ. Das Profil beginnt in der FQZ und verläuft zur Fränkischen Linie. Es wurde speziell dieses Profil modelliert, da hier das größte Gefälle in den Paläotemperaturen bestimmt werden konnte. Die Länge des Profils beträgt 30 km, die Mächtigkeit variiert, je nach modellierter Intrusionstiefe zwischen 12 km und 15 km (Abb. 41). Das Modell in Abbildung 41 wurde in drei Zonen mit unterschiedlichen Materialeigenschaften eingeteilt: in den Intrusionskörper, in ein Basement und in ein etwa 10 km mächtiges, zu modellierendes Schichtpaket, das aus Metasedimenten besteht.

Für die unterschiedlichen Schichten wurden verschiedene hydraulische und thermische Parameter bestimmt bzw. festgelegt (Tab. 5 + Abb. 41). Die Wärmeleitfähigkeit wurde an charakteristischen Gesteinen der drei Modellschichten gemessen. Für das Basement (devonischer Metabasit) und für den Intrusionskörper (Granit) beträgt die Wärmeleitfähigkeit $\lambda = 2,5 \text{ Wm}^{-1} \text{ K}^{-1}$. Für das zu modellierende Metasediment-Schichtpaket wurden die Wärmeleitfähigkeits-Messungen der stark anisotropen unterkarbonischen Schiefer verwendet. Sie ergaben eine Wärmeleitfähigkeit parallel zur Schieferung von $\lambda_{\parallel} = 3,7 - 4,7 \text{ Wm}^{-1} \text{ K}^{-1}$ und

Abb. 40: Geologische Karte mit den Profillinien AB, AC und DE, die für den Vergleich der Illitkristallinitätswerte ("Frey"-Standard) mit den Modelltemperaturen verwendet werden. Die dünnen Linien bilden die Granitoberfläche im Untergrund der FQZ in 1000 m Schritten bis maximal 5000 m Tiefe ab.

senkrecht zur Schieferung von $\lambda_1 = 1.1 - 1.6$ Wm⁻¹ K⁻¹. Die hydraulische Permeabilität wurde für die Modellbasis und den Intrusionskörper auf 10 x 10⁻²⁰ m² festgelegt. Das entspricht einem rein konduktiven Wärmefluß in diesen Bereichen. Für die zu modellierende Schicht wurde die hydraulische Permeabilität systematisch zwischen 5 x 10⁻¹⁵ m² (dominierender advektiver Wärmetransport) und 1 x 10⁻¹⁸ m² (dominierender konduktiver Wärmetransport) variiert. Für die Porosität wurde in allen Schichten der gleiche Durchschnittswert von 1 % angenommen. Die radiogene Wärmeproduktionsrate wurde für den Intrusionskörper auf $2 \mu Wm^{-3}$ festgelegt. Die Wärmeflußdichte an der Basis entspricht konstant 60 mW / m⁻². Die Oberflächentemperatur lag bei konstant 13 °C. Das hydraulische Potential wurde für den Intrusionskörper und die Basisschicht als nahezu undurchlässig angenommen. Oberhalb des Granitkörpers mußte modellbedingt ein hydraulisches Potential von 0,8 km festgelegt werden. Die Initialtemperatur des Plutons wurde anhand von Zirkon-Sättigungs-Temperaturen (WATSON & HARRISON, 1983) verschiedener Granitproben aus dem Dach des Plutons, entlang der FQZ, von RÖLL (1998) auf 700 - 800 °C abgeschätzt. Zirkon-typologische Untersuchungen nach PUPIN (1980) ergaben ähnliche Temperaturen (RÖLL, 1998). Diese Temperaturen sprechen für eine relativ schnelle Platznahme des Plutons. Der Abkühlungszeitraum des Magmas beträgt im Modell 10 Ma. Während dieser Zeit ändert sich die geometrische Situation im Modell (z.B. durch tektonische Bewegung) nicht.

Parameter	Granit	Basement	Metasediment
Wärmeleitfähigkeit (Wm ⁻¹ K ⁻¹)	2,5	2,5	4,5 (horizontal) 1,5 (vertikal)
Porosität (%)	1,0	1,0	1,0
Permeabilität (m ²)	10 ⁻²⁰	10-20	10 ⁻¹⁸
konduktives Modell			
advektives Modell	10 ⁻²⁰	10 ⁻²⁰	5 x 10 ⁻¹⁵
Wärmeproduktion	2,0		
Wärmeflußdichte (mW/m²)		60	
Oberflächentemperatur (°C)		13	

Tab. 5: Hydraulische und thermische Parameter für die in der Modellierung verwendeten Gesteinspakete (siehe Abb. 41).

Abb. 41: Modellparameter der 2D-Modellierung

Die beschriebenen Parameter bilden die Rahmenbedingungen für die Modellierungen, andere wurden variiert. Es wurden Modelle mit unterschiedlich geformten Intrusionskörpern als Wärmequelle gerechnet. Ein blockförmiger Körper (Abb. 42) wurde als Äquivalent für eine gangförmige Intrusion verwendet, wie sie von MEINEL (1993) postuliert wurde, und eine keilförmige Wärmequelle wurde als Äquivalent für die von SCHIED (1986) und SEHM et al. (1989) modellierte Granitoberfläche eingesetzt (Abb. 43). Die Intrusionstiefen bzw. die Mächtigkeit des den Granit überlagernden Gesteinspaketes wurden ebenfalls variiert. Die Intrusion erreichte die Basis des Unterkarbons (z.B. Henneberg Granit und Silberberg Granit). Die Mindestmächtigkeit des Unterkarbons beträgt nach PFEIFFER et al. (1995) 3,6 km. Petrologische Untersuchungen am direkten Kontaktgestein des Silberberg Granites ergaben Drucke von maximal 2 kbar. Das entspricht einer maximalen Überlagerung von etwa 7 km. Diese beiden Werte geben die Unter- und Obergrenze der Mächtigkeit des überlagernden Gesteins an. Sie flossen ebenfalls in die Modellierung ein (Abb. 42 + 43).

Die Proben zur Bestimmung der Paläotemperaturen wurden von der heutigen Geländeoberfläche, dem rezenten Erosionsniveau genommen. Die Oberkante des Modells entspricht

Abb. 42: Schematisches Profil der geometrischen Parameter, die in die numerische Modellierung einfließen; hier für einen block- oder gangförmigen Intrusionskörper (Erläuterungen im Text).

Abb. 43: Schematisches Profil mit den geometrischen Parametern, die in die numerische Modellierung einfließen; hier für einen keilförmigen oder diapirartigen Intrusionskörper (Erläuterungen im Text).

aber der Geländeoberfläche zur Zeit der Intrusion. Die Modelle wurden für den Zeitpunkt 10 Ma nach der Intrusion berechnet, der der geschätzten Abkühlungsdauer des Plutons entspricht. Zu diesem Zeitpunkt lag die heutige Geländeoberfläche wahrscheinlich noch mehrere tausend Meter über der heutigen. Für den Vergleich der Meßwerte mit dem Modell mußte deshalb die Tiefen- und Raumlage der heutigen Geländeoberkante zum Zeitpunkt der Kontaktmetamorphose rekonstruiert werden und als Profillinie in das Modell übertragen werden. Zur Bestimmung der rezenten Geländeoberfläche im Modellprofil mußte ebenfalls berücksichtigt werden, daß die Strukturen heute in südwestliche Richtung abtauchen.

Abb. 44: Modellierte Isolinien der maximal erreichbaren Temperaturen im Nebengestein des abkühlenden, keilförmigen Plutons. Abkühlungsdauer: 10 Ma, Intrusionstiefe 6 km, durchgezogene Linien = konduktiver Wärmetransport, gestrichelte Linien = advektiver Wärmetransport. Erläuterungen, siehe Text.

Die Lage der rezenten Profillinie AB im Modell wurde anhand der beiden Endpunkte des Profils fixiert (Abb. 8 + 40). Das Profil beginnt am Punkt A in in der FQZ und schneidet die Basis des Unterkarbons mit der Granitoberfläche (Henneberg Granit). Das Profilende (Punkt B) liegt südwestlich der FQZ an der Fränkischen Linie. Hier hat das Unterkarbon rezente Mächtigkeit von maximal 3,6 km (LAMBELET et al. 1967). Die Verkippung der Teuschnitzer Mulde beträgt entlang der Profilstrecke von 30 km etwa 7 °. Es stellte sich die Frage, ob die Scholle schon zum Zeitpunkt der Intrusion verkippt war oder ob sie erst nach der Intrusion verkippt wurde. Für diese beiden Fälle wurde die Lage der Geländeoberfläche im Modell variiert (Abb. 42 und 43). Um für den Vergleich der Meßdaten mit den Modell-temperaturen die Datendichte zu erhöhen, wurden alle Illitkristallinitätswerte im 90 °-Winkel

zur Profilstrecke AB in das Profil projeziert. Deshalb floß auch die Variation des Tops des Granitmodellkörpers entlang der FQZ um 1000 m in die Modellberechnungen mit ein. Je nach Modell wurden zwischen 36.000 und 45.000 Knotenpunkte im Abstand von 100 m berechnet.

In Abbildung 44 ist der thermische Einfluß von unterschiedlichen Wärmetransportmechanismen auf das Nebengestein am Beispiel einer keilförmigen bzw. diapirartigen Intrusion in 6 km Tiefe nach einer Abkühlungsdauer von 10 Ma dargestellt. Es sind die Isolinien für die modellierte maximale Aufheizung des Nebengesteins für einen konduktiv dominierten Wärmetransport (durchgezogene Isolinien) und für einen überwiegend advektiv dominierten Wärmetransport (gestrichelte Isolinien) abgebildet. Im konduktiven Fall verläuft das Maximum-Temperaturfeld bei niedrigen Sedimentpermeabilitäten subparallel zur Granitoberfläche und wird nicht verzerrt. Das advektive Modell bildet eine Beule im Maximum-Temperaturfeld über der Granitflanke aus. Diese Wärmebeule entsteht durch zwei Mechanismen. Nach der Platznahme des Plutons wird das Fluid über dem Pluton erhitzt, die Fluiddichte nimmt ab, das Fluid kann aufsteigen und bildet eine Konvektionszelle. Zusätzlich strömt aufgrund der erhöhten Topographie über dem Pluton kaltes Oberflächenwasser in das Metasediment, wird aufgeheizt und steigt wieder nach oben. Diese beiden unterschiedlichen Fließsysteme werden von einer gut definierten Grenzfläche an der Flanke des Plutons begrenzt, an der die warmen Fluide aufsteigen, die die Wärmebeule bilden. Die Fließrichtung der Fluide ist in der Abbildung 44 durch Darcy-Geschwindigkeits-Vektoren dargestellt.

4.3 Vergleich der Modelltemperaturen mit den Temperatur-Abschätzungen aus Teuschnitzer und Nailaer Mulde

Auf der Grundlage der beschriebenen Modellgeometrien und -parameter (Kapitel 4.2) wurden die maximalen kontaktmetamorphen Paläotemperaturen für die heutige Geländeoberfläche des Kulms berechnet, einmal für eine vor der Intrusion verkippte Oberfläche und ein zweites Mal für eine nach der Intrusion verkippte Oberfläche (Abb. 42 + 43). Aus dem Vergleich der Modelltemperaturen der beiden Schnittlagen im Profil mit den Meßwerten der Proben geht hervor, daß die Meßwerte von der heutigen Geländeoberkante die beste Annäherung an jene Modelltemperaturen zeigen, die eine Schollenverkippung nach der Intrusion simulieren. Deshalb wurden die folgenden Modellvergleiche auf eine rezente Geländeoberfläche bezogen, die erst nach der Intrusion verkippt wurde und deren Temperaturen in südwestlicher Richtung entsprechend niedriger sind.

Das Temperaturprofil in Abbildung 45 resultierte aus der Berechnung der Maximum-Temperaturfelder für eine blockförmige Wärmequelle in Annäherung an eine gangförmige Intrusion, wie sie von MEINEL (1993) postuliert wurde. Für dieses Modell wurde, entsprechend der Abschätzungen der Überlagerungsmächtigkeiten (Kapitel 4.2), eine mittlere Intrusionstiefe von 5 km festgelegt. Auf der y-Achse des Graphen ist die im Nebengestein erreichte Maximumtemperatur aufgetragen, auf der z-Achse die Entfernung vom Intrusionskörper entlang des AB-Profils (Abb. 40). Die grau unterlegte Zone zeigt den berechneten Temperaturbereich an, in Abhängigkeit der Lage der Plutonoberfläche in Bezug zum heutigen Erosionsniveau, wie sie von SEHM et al. (1989) dargestellt wurde. Die obere Grenze dieses Bereiches bilden die errechneten Maximumtemperaturen, in Abhängigkeit von der Entfernung zum Intrusionskörper für einen Modellanschnitt ab, der einer rezenten Geländeoberfläche entspricht, die den Granit schneidet. Die untere Grenze der grau unterlegten Zone gilt für den Fall, daß die Erosionsoberfläche 1 km über dem Granitkörper liegt. Die Zone selbst bildet den möglichen Temperaturbereich in diesen Grenzen ab. Diese auf der heutigen Morphologie basierende Variationsbreite floß auch in die anderen beiden Modellrechnungen ein (Abb. 46 + 47). Die schwarzen Punkte bilden die Temperaturen ab, die aus den Illitkristallinitätsmessungen an Proben von der heutigen Geländeoberfläche abgeschätzt wurden. Die beiden gestrichelten Linien geben einen Vertrauensbereich von 90 % der Werte an.

Neben der Illitkristallinität wurden die Ergebnisse aus zwei weiteren Metamorphose-Untersuchungen zum Vergleich mit der Modellierung herangezogen. Beide Arbeiten wurden im Süden der FQZ, im Raum Hirschberg durchgeführt. BRAND (1980) untersuchte Mineralphasen-Gleichgewichte in den devonischen Metabasiten im Kontaktbereich des Granits.

Abb. 45: Temperaturprofil, modelliert für die rezente Geländeoberfläche, für den Fall, daß sie nach der Intrusion verkippt wurde, mit einem gangförmigen Intrusionskörper, dessen Dach in einer Tiefe von 5 km liegt. Der grau unterlegte Bereich entspricht der Variationsbreite der Temperatur zwischen einer Oberfläche, die den Pluton schneidet (untere Grenze) und einem Profilschnitt, der 1 km über dem Pluton liegt (obere Grenze). Die Punkte stehen für die gemessenen Temperaturen, die schwarzen Punkte bilden die aus der Illitkristallinität abgeschätzten Paläotemperaturen ab. Die gestrichelten Linien zeigen den Vertrauensbereich der Meßwerte von 90 % an.

RÖLL (1998) studierte das Mineralphasen-Gleichgewicht an Bohrkernen aus dem Bereich des Sparnberger Granits (Bohrung Sp 1/57 und Sp 15/60) und in den kontaktmetamorphen unterkarbonischen Tonschiefern an der Oberfläche. Die Ergebnisse lieferten zusätzliche Temperaturen aus dem Bereich der Kontaktzone, in dem die Illitkristallinität an ihre methodischen Grenzen stößt, die bei 300 °C bis 350 °C mit der ausschließlichen Bildung von Muskovit erreicht sind. Die Illitkristallinitäts-Meßwerte wurden aus der gesamten Breite des Kulmbeckens südwestlich der FQZ zum Vergleich mit der Modellierung herangezogen, um die Datendichte zu erhöhen. Daraus entand aber kein Nachteil für die Genauigkeit der Methode, denn auch wenn schmalere NW/SE-Segmente ausgewählt werden, bleibt die Streuung der Daten ähnlich groß. Die in Temperaturen umgewandelten Illitkristallinitäten bilden bis zu einer Entfernung von 8 km ein Plateau bei im Mittel 300 °C ab, das der Obergrenze der Methode entspricht. Von 8 km bis zu einr Entfernung von 20 km nimmt die mittlere Temperatur auf etwas über 200 °C ab, und verharrt mit zunehmender Entfernung auf diesem Niveau. Die Modelltemperaturen bilden bis zu einer Entfernung von etwa 4 km vom

Zentrum des Plutons ein Temperaturplateau ab, das oberhalb der Nachweisgrenze der Illitkristallinität liegt. Dann fallen sie sehr steil in das Illitkristallinitäts-Temperaturfeld ab um sich mit einem sanften Kurvenverlauf bei 10 km Entfernung bei 200 °C einzupendeln. Zwischen 5 km und 16 km zeigt die Illitkristallinität deutlich höhere Temperaturen an, als die Modellrechnung erlaubt.

Abb. 46: Temperaturprofil, modelliert für die rezente Geländeoberfläche, für den Fall, daß sie nach der Intrusion verkippt wurde, mit einem diapirförmigen Intrusionskörper, dessen Dach in einer Tiefe von 3,5 km liegt. Der grau unterlegte Bereich entspricht der Variationsbreite der Temperatur zwischen einer Oberfläche, die den Pluton schneidet (untere Grenze) und einem Profilschnitt, der 1 km über dem Pluton liegt (obere Grenze). Die Punkte stehen für die gemessenen Temperaturen, die schwarzen Punkte bilden die aus der Illitkristallinität abgeschätzten Paläotemperaturen ab. Die gestrichelten Linien zeigen den Vertrauensbereich der Meßwerte von 90 % an.

Für die Abbildungen 46 und 47 wurde in der Modellierung die Form der Wärmequelle geändert. Die Blockform wurde durch eine Keilform ersetzt, die der Modellgeometrie des Diapirs von SEHM et al. (1989) entspricht. Die beiden Rechenmodelle der beiden Abbildungen unterscheiden sich in ihrem Intrusionsniveau. In Abbildung 46 ist das Temperaturfeld für ein flaches Intrusionsniveau dargestellt mit einer maximalen Metasediment-Überlagerung von 3,5 km, wie sie von PFEIFFER et al. (1995) für das Unter-karbon angegeben wurde. Der gerechnete Maximum-Temperaturbereich (grau unterlegte

Zone) für das Keil-Modell mit flachem Intrusionsniveau unterscheidet sich von dem des Block-Modells (Abb. 45) durch eine zu Beginn weiter reichende Hochtemperasturphase, die bei etwa 6 km Entfernung von der Wärmequelle erst steil, dann moderat bis auf 100 °C bei 22 km abnimmt. Das modellierte Temperaturfeld liegt im Profil im temperatur-sensitiven Bereich der Illitkristallinität deutlich unter den abgeschätzten Temperaturen.

Abb. 47: Temperaturprofil, modelliert für die rezente Geländeoberfläche, für den Fall, daß sie nach der Intrusion verkippt wurde, mit einem diapirförmigen Intrusionskörper, dessen Dach in einer Tiefe von 3,5 km liegt. Der grau unterlegte Bereich entspricht der Variationsbreite der Temperatur zwischen einer Oberfläche, die den Pluton schneidet (untere Grenze) und einem Profilschnitt, der 1 km über dem Pluton liegt (obere Grenze). Die Punkte stehen für die gemessenen Temperaturen, die schwarzen Punkte bilden die aus der Illitkristallinität abgeschätzten Paläotemperaturen ab. Die gestrichelten Linien zeigen den Vertrauensbereich der Meßwerte von 90 % an.

Das Keil-Modell für das tiefe Intrusionsniveau von 6,5 km (Abb. 47), das aus den Druckabschätzungen von BRAND (1980) und RÖLL (1998) resultiert, zeigt die beste Annäherung an die Paläotemperatur-Abschätzungen aus den Illitkristallinitäten. Die modellierten Temperaturen liegen im temperatur-empfindlichen Bereich der Illitkristallinität des Profils vollständig im Streuungsbereich der Illitkristallinität.

Abb. 48: Vergleich zwischen konduktivem (grau unterlegter Bereich) und advektivem (Bereich zwischen den durchgezogenen Linien) Wärmetransport. Intrusiontiefe 6 km; die obere Grenze der beiden Zonen steht für einen nach der Intrusion verkippten Erosionsanschnitt, die obere Grenze für eine nach der Intrusion verkippte Geländeoberfläche. Der Vertrauensbereich der aus der Illitkristallinität abgeschätzten Temperaturwerte beträgt 90 %.

Zur Bestimmung des dominierenden Wärmetransport-Mechanismus – konduktiv oder advektiv – wurde ein weiteres numerisches Modell gerechnet. Die Ergebnisse sind in Abbildung 48 dargestellt. Die Kurven wurden für einen keilförmigen Intrusionskörper berechnet, dessen Dach sich in 6 km Tiefe befindet. Die modellierte heutige Oberfläche schneidet den Intrusionskörper am Top. In das Diagramm sind die Ergebnisse aus vier verschiedenen Berechnungen eingeflossen:

- Das grau unterlegte Feld bildet den Temperaturbereich f
 ür den konduktiv dominierten W
 ärmetransport ab.
- 2) Der Raum zwischen den beiden durchgezogenen Linien steht für den Temperaturbereich, der durch einen advektiven Wärmetransport dominiert wurde.
- Die obere Grenze der beiden Temperatur-Kurvenfelder entspricht dem Modellschnitt eines Erosionsniveaus, das nach der Intrusion in Richtung SW verkippt wurde.

4) Die untere Grenze steht jeweils für eine heutige Geländeoberfläche, die schon vor der Intrusion verkippt wurde.

Die aus der Illitkristallinität abgeschätzten Temperaturen sind auf den ersten Blick im Durchschnitt höher als die der Modellkurven. Die Lage der Wärmebeule der advektiven Temperaturkurve in den ersten 8 km des Profils wird entscheidend von der Form der Wärmequelle gesteuert (siehe Kapitel 4.2, Abb. 44). Für diese ersten km existieren leider keine ausreichend abgesicherten Temperaturabschätzungen mit statistischer Relevanz, weil die aus den Illitkristallinitäten abgeleiteten Temperaturen für den kritischen Bereich der ersten 8 km methodisch bedingt keine höheren Temperaturen als 300 °C bis 350 °C anzeigen. In den folgenden Profilkilometern fallen die advektiven Temperaturkurven stärker ab als die konduktiven, so daß das konduktive Temperaturfeld die bessere Annäherung an die Temperaturabschätzungen zeigt. Die obere Grenze des konduktiven Tempeaturfeldes zeigt für dieses Modell die deutlich beste Annäherung an die Temperaturabschätzungen an. D. h., das Temperatur-Modell eines keilförmigen Plutons, dessen Dach eine Tiefe von 6 km erreicht hat, und dessen überlagerndes Metasediment erst nach der Intrusion verkippt wurde, zeigt für einen konduktiv dominierten Wärmetransport die beste Übereinstimmung mit den Temperaturabschätzungen aus der Illitkristallinität.

4.4 Vergleich der Modelltemperaturen mit den Temperatur-Abschätzungen aus der Ziegenrücker und Mehltheuerer Mulde

Der thermische Einfluß der FQZ-Granitintrusion auf die Gesteine der Ziegenrücker und Mehltheuerer Mulde wurde nicht modelliert. Da jedoch nach SEHM et al. (1989) der Granitkörper unter der FQZ quasi-symmetrisch aufgebaut ist, lassen sich die Modellrechnungen auch für dieses SW-NE Profil verwenden, um den möglichen kontaktmetamorphen Einfluß des FQZ-Granites auf das Nebengestein abzuschätzen. In Abbildung 49 und 50 ist der Vergleich der modellierten Maximaltemperaturen im Nebengestein mit den Temperaturabschätzungen aus den Illitkristallinitäten dargestellt. Dazu wurde die Modellierung eines keilförmigen Plutons verwendet, dessen Dach eine Tiefe von 6,5 km erreicht hat und dessen umgebende Metasedimente erst nach der Intrusion verkippten wurden.

In der Ziegenrücker Mulde (AC-Profil, Abb. 40) zeigen die Paläotemperatur-Abschätzungen von der Illitkristallinität keine Übereinstimmung mit den Modelltemperaturen (Abb. 49). Die abgeschätzten Temperaturen liegen im gesamten Profil im Mittel an der methodischen Grenze der Illitkristallinität von etwa 300 °C. Im Gegensatz dazu nehmen die Modelltemperaturen nach etwa 6 km in einer steilen Kurve ab, um dann mit einem flachen Gefälle nach 20 km die 200 °C Grenze zu erreichen.

Abb. 49: SW (FQZ-Pluton) - NE (Auma-Pluton) Temperaturprofil, berechnet für die rezente Erosionsoberfläche im Unterkarbon der Ziegenrücker Mulde im Vergleich zu den abgeschätzten Temperaturen. Keilmodell, Intrusionstiefe (FQZ) 6,5 km.

Für die Mehltheuerer Mulde (DE-Profil, Abb. 40) wurde dasselbe Modell wie für die Ziegenrücker Mulde zum Vergleich mit den Paläotemperatur-Abschätzungen verwendet (Abb. 50). Auch hier ist keine Übereinstimmung zwischen den Modell-Temperaturkurven und den abgeschätzten Temperaturen zu finden. Letztere sind zu Beginn des Profils (zwischen 8 km und 10 km) eher zu niedrig, und steigen dann über die Modelltemperaturen hinaus weiter an. Für dieses Profil erschwert die geringe Datendichte zusätzlich die Aussage.

Abb. 50: SW (FQZ-Pluton) - NE (Greizer Querzone) Temperaturprofil, berechnet für die rezente Erosionsoberfläche im Unterkarbon der Mehltheuerer Mulde im Vergleich zu den abgeschätzten Temperaturen. Keilmodell, Intrusionstiefe (FQZ) 6,5 km.

4.5

mit den % R $_0$ -Meßwerten für das NE / SW-Profil

Die Modellierung der Vitrinitreflexionen wurde mit dem EASY % R₀-Programm von SWEENY & BURNHAM (1990) durchgeführt. Dieses Programm berücksichtigt sowohl die Temperatur in Abhängigkeit von der Zeit, als auch den Einfluß der chemischen Parameter. Grundlage der Berechnung ist die Abspaltung der quantitativ wichtigsten, bei der Reifung von Vitrinit abgegebenen flüchtigen Bestandteile: Wasser, Kohlendioxid, Methan und höhere Kohlenwasserstoffe. Jede dieser Abspaltungen wird der Arrhenius-Gleichung folgend durch den Frequenzfaktor (10^{13} sec⁻¹) und die Aktivierungsenergie (34 bis 72 kcal/Mol) reaktionskinetisch beschrieben. Die große Spannbreite in der Aktivierungsenergie wurde gewählt, um der Heterogenität in dem sedimentären organischen Material gerecht zu werden. Aus den Aktivierungsenergien und der Temperaturgeschichte eines Sediments wird ein Faktor F errechnet, der den Grad der Abspaltung flüchtiger Bestandteile angibt und mit dessen Hilfe der Easy % R₀-Wert ermittelt wird. Das kinetische Modell ist bis zu Vitrinitreflexionswerten von 4,69 % R₀ definiert. Höhere Werte sind nach SWEENY & BURNHAM (1990) theoretisch berechenbar, es müssen dann jedoch zusätzliche Daten für hohe Aktivierungsenergien in das Modell eingebaut werden, für die aber brauchbare Kalibrierungen fehlen.

Als Grundlage für die EASY % R_0 -Modellierung dienten die Parameter jenes Modells aus der thermischen Modellierung des abkühlenden Granitkörpers in Kapitel 4.3, das die beste Annäherung an die Temperatur-Abschätzungen hatte, die mit Hilfe der Illitkristallinitäten durchgeführt wurden. Das "Best-Fit"-Modell wurde für einen Granit gerechnet, dessen Dach eine Tiefe von 6,5 km erreicht hat, mit einem Probenahme-Horizont (heutige Geländeoberfläche), der erst nach der Intrusion verkippt wurde. In das EASY % R_0 -Modell flossen die Maximaltemperaturen aus dem "Best-Fit" Modell der thermischen Modellierung in Abhängigkeit von der Entfernung zum Intrusionskörper für dessen Abkühlungszeitraum von 10 Ma ein. Als maximaler Versenkungszeitraum wurden 335 Ma angenommen, wobei eine Änderung des Versenkungszeitraumes um 50 Ma die Inkohlungswerte um maximal 0,3 % R_m verschiebt. Der geothermische Gradient wurde zwischen 25 °C / km, 40 °C / km, 50 °C / km und 60 °C / km variiert, wobei für 60 °C / km die Maximaltemperaturen aus der thermischen Modellierung nicht berücksichtigt wurden, da sie zu niedrig waren. Die Oberflächentemperatur des EASY % R_0 -Modells entspricht der des thermischen Modells von 13 °C.

Die Ergebnisse der EASY % R_0 -Modellierung sind in den Abbildungen 51 und 52 dargestellt. Die unterschiedlichen Kurven zeigen die berechneten mittleren Reflexionswerte (% R_m), in Abhängigkeit von der Entfernung zum Pluton, für die verschiedenen geothermischen Gradienten. In der NE-Hälfte des Modells bilden die berechneten Werte bei 4,69 % R_m ein Plateau ab, das der oben beschriebenen methodischen Obergrenze des kinetischen Modells entspricht. Die schwarzen Punkte entsprechen den Vitrinitreflexions-Meßwerten, die mit den Modellwerten verglichen wurden.

Abb. 51: Vergleich der modellierten Vitrinitreflexionswerte (Linien) mit den Meßwerten (schwarze Punkte), in Abhängigkeit von der Entfernung zum Intrusionskörper für die Teuschnitzer Mulde. Die verschiedenen Modellkurven bilden Berechnungen für unterschiedliche geothermische Gradienten ab.

In Abbildung 51 sind die Vitrinitreflexions-Meßwerte aus der Teuschnitzer Mulde gegen die modellierten Vitrinitreflexionswerte aufgetragen. Die Meßwerte stammen aus einem Korridor, dessen Grenze etwa 3 km südöstlich der AB-Profillinie (Abb. 40) und 12 km nordwestlich dieser Linie liegen. Trotz der großen Streuung der Meßwerte ist in der Teuschnitzer Mulde eine deutliche Zunahme der $\% R_m$ -Meßwerte von SW nach NE zu erkennen. Im Vergleich zu den Modellwerten zeigen die Meßwerte im Mittel einen etwas steileren Verlauf als die Modellkurven südwestlich des Plateaus. Die mit einem geothermischen Gradienten von 60 °C / km berechneten % Rm-Werte liegen deutlich über den Meßwerten.

Abbildung 52 zeigt die modellierten Vitrinitreflexionswerte im Vergleich zu den Meßwerten für den Bereich südöstlich des Teuschnitzer Korridors, der Abschiebungszone, der südwest-

lichen Verlängerung des Bergaer Sattels und der Nailaer Mulde. Die Vitrinitreflexions-Meßwerte zeigen keine Übereinstimmung mit den Modellkurven. Auch eine weitere Unterteilung dieses Bereiches in kleinere NE / SW streichende Zonen zeigt kein besseres Ergebnis.

Abb. 52: Vergleich der modellierten Vitrinitreflexionswerte (Linien) mit den Meßwerten (schwarze Punkte), in Abhängigkeit von der Entfernung zum Intrusionskörper für den Bereich südöstlich der Teuschnitzer Mulde. Die verschiedenen Modellkurven bilden Berechnungen für unterschiedliche geothermische Gradienten ab.

4.6 Diskussion der Ergebnisse aus dem Vergleich der Modellierungen mit den Temperaturabschätzungen

Die thermische Modellierung für den W-Teil der FQZ (AB-Profil, Abb. 40) wurde von G. Kosakowski durchgeführt. Sie zeigt die beste Anpassung an die Temperaturabschätzungen aus der Illitkristallinität für das Granit-Keilmodell mit einem tiefen Intrusionsniveau (Kapitel 4.2 und 4.3). Die Geometrie des Keilmodells ist der Oberfläche des Modellgranits von SEHM et al. (1989) im Untergrund der FQZ angenähert. Die Wärmeabstrahlung des Magmenkörpers reicht unter den Modellbedingungen aus, um mit einer einphasigen Intrusion bei einem Abkühlungszeitraum von 10 Ma die mit der Illitkristallinität abgeschätzte Metamorphoseanomalie an der W-Flanke der FQZ zu verursachen. Da die syntektonische Metamorphose in der FQZ das dominierende thermische Ereignis (FRANKE, 1984) ist und die in der FQZ aufgeschlossenen posttektonischen Granite und deren Kontaktaureolen klein sind, wird eine großvolumigie syntektonische Hauptintrusionsphase in der FQZ gefordert, der eine relativ geringe posttektonische Intrusionsphase folgt, die entlang von Störungen bis an die heutige Oberfläche aufgedrungen ist. Der Anteil von präkarbonischem Granit am Schwerekörper muß vernachlässigbar sein, damit das thermische Modell seine Gültigkeit behält. Außer einem kleinen Vorkommen im S-Teil der FQZ (Hirschberg) gibt es in der FQZ keine Hinweise auf präkarbonische Granite.

Für die SW / NE-Profile durch die Ziegenrücker (AC-Profil, Abb. 40) und Mehltheuerer Mulde (DE-Profil, Abb. 40) wurden keine thermischen Modelle gerechnet. Jedoch konnte das Temperaturmodell von G. Kosakowski zum Vergleich mit den aus der Illitkristallinität abgeschätzten Temperaturen der Ziegenrücker- und Mehltheuerer Mulde herangezogen werden. Dazu wurde es an der FQZ-Achse (NW / SE) gespiegelt. Der Vergleich des gespiegelten Temperaturmodells mit den Temperaturabschätzungen ist legitim, da nach SEHM et al. (1989) die Oberfläche des Granitkörpers im Untergrund der FQZ quasi-symmetrisch aufgebaut ist (Abb. 40). Die Rahmenbedingungen des Temperaturmodells entsprechen dem "best-fit"-Modell der Teuschnitzer Mulde. Dieses Modell wurde für eine Intrusion gerechnet, deren Platznahme vor der Anlage der asymmetrischen Horstzone erfolgte. Die Strukturen der Ziegenrücker und Mehltheuerer Mulde wurden aber nicht in dieser Art und Weise verkippt. Deshalb sind die Modelltemperaturen im nordöstlichen Profilbereich theoretisch etwas zu hoch. Der Kurvenverlauf der gerechneten Temperaturen müßte folglich steiler sein (Abb. 49 und 50). In der Ziegenrücker Mulde liegen die gespiegelten Modelltemperaturen im Vergleich zu den aus der Illitkristallinität abgeschätzten Temperaturen ab 12 km Entfernung vom südwestlichen Profilbeginn (Profilpunkt A, Abb. 40) deutlich zu niedrig (Abb. 49). Die aus der IK abgeschätzten Temperaturen verharren auf einem Niveau an der methodischen Obergrenze der Illitkristallinität. Der Modellgranit reicht folglich nicht aus, um das Metamorphosehoch im E- Teil der FQZ zu erklären. Die Modellierung ist mit der Interpretation in Kapitel 3.4. vereinbar, in der eine weitere, posttektonische Wärmequelle in der Ziegenrücker Mulde gefordert wird.

In der Mehltheuerer Mulde (DE-Profil) gibt es keine Übereinstimmung zwischen den Temperaturen des gespiegelten Modells und den Temperaturabschätzungen aus der Illitkristallinität (Abb. 50). Im W-Teil des Profils liegen die Temperaturabschätzungen gegenüber den Modelltemperaturen deutlich niedriger. Die abgeschätzten Temperaturen nehmen jedoch in Richtung NE stetig zu und liegen in der NE-Hälfte des Profils deutlich über den Modelltemperaturen. Eine mögliche Erklärung für die im SW-Teil der Ziegenrücker Mulde gegenüber dem Modell zu geringen Temperaturen ist, daß die negative Schwereanomalie in diesem Bereich durch präkarbonische Granite mit verursacht ist, die aber keinen Einfluß mehr auf die Metamorphose im Unterkarbon ausüben konnten. Die Entstehung der Metamorphoseanomalie der Greizer Querzone wurde bereits in Kapitel 3.4 diskutiert.

Der Vergleich der modellierten Vitrinitreflexion (Kapitel 4.5) mit den Vitrinitreflexionsmeßwerten zeigt für das Profil der Teuschnitzer Mulde (Abb. 51) einen einheitlichen Trend, für das Profil der Nailaer Mulde (Abb. 52) gibt es jedoch keine Annäherung. In beiden Fällen streuen die Meßwerte beträchtlich. Dieses Ergebnis unterstützt die Interpretation in Kapitel 3.4, daß die schlechte Korrelation der Illitkristallinität mit der Vitrinitreflexion auf die Qualität der Vitrinitreflexionsmessungen zurückzuführen ist.

5 SCHLUSSFOLGERUNGEN

Die Illit- und Chloritkristallinität sind bewährte und weitverbreitete Methoden zur Abschätzung der sehr niedriggradigen Metamorphose in Tonschiefern. Sie erlauben eine höhere Auflösung des Anchimetamorphen Bereiches. Die Voraussetzungen für eine erfolgreiche Anwendung sind: - eine methodische Gleichbehandlung der Proben nach den Richtlinien des IGCP 294 (KISCH,

- 1991),
- die Verwendung von Standards (WARR & RICE, 1994);
- die Reproduzierbarkeit der Messungen (KRUMM, 1992);
- da eine statistische Auswertung, eine ausreichend große Probenzahl;
- eine möglichst einheitliche Zusammensetzung des Probenmaterials.

Anhand von Literaturdaten läßt sich, wenn auch nur sehr ungenau, eine logarithmische Funktion zwischen der Illitkristallinität und der Temperatur ableiten.

In dieser Arbeit lieferten die Illit- und Chloritkristallinität ein übereinstimmendes Metamorphosebild, das für den W-Teil des Arbeitsgebietes durch die Vitrinitreflexion wenigstens qualitativ bestätigt werden konnte. Die Defizite der Vitrinitreflexion sind zum einen auf eine zu geringe Probendichte, zum anderen auf ein für den bearbeiteten Metamorphosebereich ungeeignetes Präparations- und Meßverfahren zurückzuführen. Die Druckabschätzungen mit dem 6d_(33-1,060)-Geobarometer zeigen nach der Einteilung von GUIDOTTI & SASSI (1986) einheitliche Drucke an der Grenze der Niedrig- zur Mitteldruckfazies.

Mit der Illit- und Chloritkristallinität kann für den Bereich westlich der FQZ von der Fränkischen Linie in Richtung auf die FQZ eine deutliche Zunahme der thermischen Metamorphose von hochdiagenetischen auf epizonale Bedingungen beobachtet werden. Die tektonischen Gefüge zeigen in der FQZ gegenüber den südwestlichen und nordöstlichen Nachbargebieten eine stärkere duktile Deformation an, die bei einheitlichen Drucken auf eine thermische Anomalie in der FQZ schließen läßt. Da in der FQZ auch posttektonische Granite aufgeschlossen sind, sind eine syn- und eine postektonische Temperaturerhöhung zu erwarten. Als Ursache für die syntektonisch erhöhte Temperatur wird ein synkinematisch intrudierter Granit gefordert, der im Untergrund der FQZ verborgen ist. Hinweise auf einen größeren Granitkörper im Untergrund der FQZ liefert das gravimetrische Schwerebild, mit dessen Hilfe die Oberfläche des Plutons von SEHM et al. (1989) modelliert wurde.

Der Kern der Teuschnitzer Mulde, westlich der FQZ, liegt außerhalb des thermischen Einflusses der FQZ. Hier kann die Metamorphose alleine mit einer stratigraphischen Versenkung erklärt werden.

Die Illit- und Chloritkristallinität in der Ziegenrücker Mulde (nordöstliche Verlängerung der Teuschnitzer Mulde) bilden eine gleichbleibend hohe, hochanchizonale bis epizonale Metamorphose ab, die nicht nur auf den thermisschen Einfluß der FQZ zurückgeführt werden kann. Die tektonischen Strukturen geben keine Hinweise auf eine synkinematisch erhöhte Metamorphosetemperatur. Hier ist eine posttektonische Aufheizung der Ziegenrücker Mulde wahrscheinlich: in ihrem W-Teil belegen einige NW-streichende Gänge eine gewisse magmatische Aktivität, und im E-Teil weist das Schwerebild auf einen verborgenen "Pluton von Auma" hin.

Im W-Teil der Mehltheuerer Mulde kann die Abnahme der Metamaphose von der FQZ in Richtung E auf den mit zunehmender Entfernung schwindenen Einfluß der Temperaturanomalie der FQZzurückgeführt werden. Der Wiederanstieg der Metamorphose im E-Teil der Mehltheuerer Mulde wurde von der Metamorphoseanomalie in der Greizer Querzone gesteuert, die parallel zur FQZ angelegt ist und ähnlich wie diese durch ein syntektonisches Metamorphosehoch geprägt wurde. Das syntektonische Metamorphosehoch wurde wahrscheinlich, wie in der FQZ, durch einen im Untergrund verborgenen, synkinematisch intrudierten Granit verursacht. Hier gibt es keine Hinweise auf eine posttektonische Kontaktmetamorphose.

Für den W-Teil der FQZ wurde eine 2D Modellierung durchgeführt, die die Kontaktwirkung eines Granitkörpers in der FQZ auf das unterkarbonische Nebengestein simuliert, der eine ähnliche Oberfläche hat, wie sie aus dem gravimetrischen Schwerebild von SEHM et al (1989) modelliert wurde. Die thermische Modellierung zeigt die beste Annäherung an die von der Illitkristallinität abgeleiteten Metamorphosetemperaturen für einen Granitkörper mit einer Oberfläche, die nach SW und NE abtaucht und der heute in einer Tiefe von 5 km eine maximale NE-SW-Ausdehnung von 20 km erreicht. Die Intrusionstemperatur beträgt etwa 700 °C, die ursprüngliche Gesteinsüberdeckung über dem Dach des Plutons 6,5 km. Das Modell läßt einen überwiegend konduktiv gesteuerten Wärmetransport erwarten. Die nach SW abtauchende asymmetrische Horstzone wurde im Modell erst nach der Intrusion verkippt.

Die Ergebnisse der Illit- und Chloritkristallinität sollten in Folgeprojekten mit anderen Metamorphoseparametern wie Vitrinitreflexion und Fluid-Einschlußmessungen überprüft werden. Möglicherweise kann mit K / Ar- oder Ar / Ar-Altersdatierung an Illiten die syn- von der posttektonischen Metamorphose unterschieden und auskartiert werden. Großflächig verbreitete syntektonische Metamorphosealter würden die Interpretation einer syntektonischen Granitintrusion im Untergrund der FQZ unterstützen.

LITERATURVERZEICHNIS

- ABDULLAH, N., GRAUERT, B. & KROHE, A. (1994): U-Pb- und Rb-Sr-Untersuchungen von Metagraniten der Mylonitzone von Foss-Altenhammer und einer Probe des Leuchtenberger Granits. - Abstract of the 7th colloquium of the German Continental Deep-Drilling Project (KTB), 2-3 June 1994, Giessen.
- ANDERLE, H.J., FRANKE, W. & SCHWAB, M. (1995): III.C.1 Stratigraphy In: Dallmeyer, R.D., Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe. 604 S., Springer, Berlin.
- ÁRKAI, P., HORVÁTH, Z.A. & TÓTH, M. (1981): Transitional very low- and low-grade regional metamorphism of the Paleozoic formations, Uppony Mountains, NE-Hungary: mineral assemblages, illite crystallinity, -b0 and vitrinite reflectance data. - Acta Geologica Academiae Scientarum Hungaricae, 24:285-294.
- ÁRKAI, P. (1991): Chlorit crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. J. metamorphic Geol., 9:723-734.
- ÁRKAI, P., BALOGH, K. & DUNKL, I. (1995): Timing of low-temperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bÿkkium, innermost Western Carpathians, Hungary. - Geol. Rundsch., 84:334-343.
- ÁRKAI, P., BALOGH, K. & FREY, M. (1997): The effects of tectonic strain on crystallinity, apparent mean crystallite size and lattice strain of phyllosilicates in low temperature metamorphic rocks. A case study from the Glarus overthrust, Switzerland. - Schweiz. Mineral. Petrogr. Mitt., 77:27-40.
- AWWILLER, D.N. (1993): Illite / Smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas gulf coast Paleocene Eocene. J. sed.-petrol., 63:3:501-512.
- BAILEY, S.W. (1984): Classification and Structures of the Micas. S. 1-12. In: Bailey, S.W. (ed.), Micas, Reviews in Mineralogy, Vol. 13, 584 S., Mineral Society of America, Washington, D.C.
- BAKER, C.E. & GOLDSTEIN, R.H. (1990): Fluid-inclusions technique of determing maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. - Geology, V. 18:1003-1006.

- BANKWITZ, P. & SCHROEDER, E. (1962): Tektonische Studien in Schiefer- und Phyllitgebieten Thüringens. Geol. Rundsch., 52:365-376.
- BEHR, H.J., ENGEL, W. & FRANKE, W. (1982): Variscan Wildflysch and Nappe Tectonics in the Saxothuringian Zone (Northeast Bavaria, West Germany). - Amer. J. Soci., 282:1438-1470.
- BEHRMANN, J., SCHUSTER, J., TANNER, D.C. & O'BRIEN, P. (1994): Wärme und Bewegung während der variscischen Orogenese in den moldanubischen Gneisen Ostbayerns, II. Kinematik metamorpher Reaktionen. - Göttinger Arb. Geol. Paläont., Sb1, 163-164.
- BIRKELBACH, M. (1989): Untersuchungen zur möglichen Mobilität von Elementen aus Tonschiefern beim Übergang von der Diagenense zur niedriggradigen Metamorphose am Beispiel der unterkarbonischen Tonschiefer des Frankenwaldes. - Unveröffentl. DFG-Abschlußbericht über die Tätigkeit vom 1.05.1988 bis 30.4.1989.
- BISCAJE, P.E. (1965): Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76:803-832.
- BLENKINSOP, T.G. (1988): Definition of low-grade metamorphic zones using illite crystallinity. J. metamorphic Geol., 6:623-636.
- BRAND, R. (1980): Die niedriggradige Metamorphose einer Diabas-Assoziation im Gebiet Berg / Frankenwald. - N. Jb. Miner. Abh., 139:1:82-101.
- BRAUKMANN, F.J. (1984): Hochdiagenese im Muschelkalk der Massive von Bramsche und Vlotho. - Bochumer geol. u. geotechn. Arb., 14:195 S.
- BRINDLEY, G.W. & BROWN, G. (1980): Crystal Structures of Clay Minerals and their Xray identification. - Min. Soc., Monograph, 5:1-495, London.
- BROWN, G. (1961): The X-ray identification and crystal-structures of clay minerals. Min. Soc. 1961, Clay Minerals Group, 544 S., London.
- BUSTIN, R.M. (1983): Heating during thrust faulting in the Rocky Mountains: friction or fiction? Tectonophysics, 95:309-328.
- BUSTIN, R.M., CAMERON, A.R., GRIEVE, D.A. & KALKREUTH, W.D. (1989): Coal Petrology: Its Principles, Methods and Applications - Short Course Notes Volume 3 -Geological Association of Canada, 230 S.

- CIPRIANI, C., SASSI, F.P. & VITERBO-BASSANI, C. (1968): La composizione delle miche in raporto con le constanti reticolari e col grado metamorfico. Rend. Soc. Ital. Miner. Petr., 24:153-187.
- CIPRIANI, C., SASSI, F.P. & SCOLARI, A. (1971): Metamorphic white micas: definition of paragenetic field. Schweiz. Miner. Petr. Mitt., 51:259-302.
- CLAUSER, C. (1988): Untersuchungen zur Trennung der konduktiven und konvektiven Anteile im Wärmetransport in einem Sedimentbecken am Beispiel des Oberrheingrabens.
 Fortschritt-Berichte VDI, VDI-Verlag Düsseldorf, 19:28.
- CLAUSER, C. & VILLINGER, H. (1990): Analysis of conductive and convective heat transfer in a sediment basin, demonstrated for the Rheingraben. Geophysical Journal International, 100:393-414.
- DALLA TORRE, M. & FREY, M. (1997): The evolution from Ad to ordered 2M₁ white Kmica polytype in low-temperature metamorphosd sedimentary rocks. - Schweiz. Mineral. Petrolgr. Mitt., 77:149-159.
- DEKORP and OROGENIC PROCESSES Working Groups (in press): Structure of the Saxonian Granulites geological and geophysical constraints on the exhumation of HP/HT-rocks. Tectonics (in press).
- Di MARCO, M.J., FERREL, JR. & LOWE, D.R. (1989): Polytypes of 2:1 dioctahedral micas in silicified volcanicclastic sandstones, Warrawoona Group, Pilbara Block, Western Australia. - Amer. J. Sci., 289:649-660.
- DUNOYER DE SEGONZAC, G. (1970): The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15:281-346.
- EBERL, D.D, SRODON, J. LEE, M., NADEAU, P.H. & NORTHROP, H.R. (1987): Sericite from the Silverstone caldera, Colerado: Correlation among structure, composition, origin, and particle thickness. Am. Mineral., 72:914-934.
- EBERL, D.D. (1993): Three zones for illite formation during burial diagenesis and metamorphism. Clays & Clay Minerals, 41:1:26-37.
- EIGENFELD, R. (1938): Die granitführenden Konglomerate des Oberdevons und Kulms im Gebiet altkristalliner Sattelanlagen in Ostthüringen, Frankenwald und Vogtland. Abh. Math. Phys. Klasse Sächs., Akad. Wiss., 42:1-129, Leipzig.

EISBACHER, G.H., LÜSCHEN, E. & WICKERT, F. (1989): Crustal-scale thrusting and

extension in the Hercynian Schwarzwald and Vogeses, Central Europa. - Tectonics, 8:1-21.

- ESQUEVIN, J. (1969): Influence de la composition chimique des illites sur la cristallinité. -Bull. Centre Rech. Peau., S.N.A., 3/1:147-154.
- ESSENE, E.J. & PEACOR, D.R. (1995): Clay mineral thermometry a critical perspective. -Clays & Clay Minerals, 43:5:540-553.
- FERREIRO MÄHLMANN, R. (1994): Zur Bestimmung von Diagenesehöhe und beginnender Metamorphose - Temperaturgeschichte und Tektogenese des Austroalpins und südpenninikums in Voralberg und Mittelbünden. - Frankfurter geowiss. Arb., Serie C, 14:1-498.
- FERREIRO MÄHLMANN, R. (1996): Das Diagenese-Metamorphose-Muster von Vitrinitreflexion und Illit-"Kristallinität" in Mittelbünden und im Oberhalbstein - Teil 2: Korrelation kohlepetrographischer und mineralogischer Parameter. - Schweiz. Mineral. Petrogr. Mitt., 76:23-46.
- FLEHMIG, W. (1973): Kristallinität und Infrarotspektroskopie natürlicher dioktaedrischer Illite. N. Jb. Miner. Mh., 7/8:351-361.
- FLEHMING, W. & GEHLKEN, P.L. (1989): Zum Celadonitmolekül in Illiten paläozoischer Sedimente, seiner genetischen Beziehung und mineralogischen Auswirkung. - Z. dtsch. geol. Ges., 140:343-353.
- FRANKE, W. (1984): Variszischer Deckenbau im Raume der Münchberger Gneismasse abgeleitet aus der Fazies, Deformation und Metamorphose im umgebenden Paläozoikum.
 - Geotekt. Forschungen, 68, 253 S.
- FRANKE, W. (1989a): Tectonostratigraphic units in the Variscan belt of central Europe. -Geol. Soc. Am., Special Paper, 230:67-90.
- FRANKE, W. (1989b): Variscan plate tectonics in Central Europe current ideas and open questions. Tectonophysics, 169:221-228.
- FRANKE, W. (1993): The Saxonian granulites: a metamorphic core complex? Geol. Rundsch. 82:505-515.
- FRANKE, W. (1995a): III.B.1 Stratigraphy. In: Dallmeyer, R.D., Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe. 604 S., Springer, Berlin.

- FRANKE, W. (1995b): Exhumation of the Saxon Granulites: Orogenic collapse vs. rifting. -Terra abstracts, Abstract supplement No. 1 to Terra Nova, vol. 7. EUG 8, Strasbourg, France, April 1995, Oral and Poster presentation abstracts: 120.
- FRANKE, W. & ENGEL, W. (1986): Synorogenic sedimentation in the Variscan belt of Europe. - Bull. Soc. Géol. France, 1:25-33.
- FRANKE, W. & ONKEN, O. (1995): Zur prädevonischen Geschichte des Rhenohercynischen Beckens. - Nova Acta Leopoldina NF, 71:291:53-72.
- FRANKE, W. & STEIN, E. (1999): Contrasting modes of exhumation of the Saxothuringian Belt. - EUG Abstract volume, Terra Abstracts, 4:1.11:84
- FRANKE, W., DALLMEYER, R.D. & WEBER, K. (1995a): XI Geodynamic Evolution In: Dallmeyer, R.D., Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe. 604 S., Springer, Berlin.
- FRANKE, W, KREUZER, H. OKRUSCH, M. SCHÜSSLER, U. & SEIDEL, E. (1995b):
 V.C.1 Stratigrapy, Structure, and Igneous Activity; S. 277-308. In: Dallmeyer, R.D.,
 Franke, W. & Weber, K. (eds.): Pre-Permian Geology of Central and Eastern Europe. 604
 S., Springer, Berlin.
- FREY, M., TEICHMÜLLER, M., TEICHMÜLLER, R., MULLIS, J., KÜNZI, B., BREITSCHMID, A., GRUNER, U. & SCHWITZER, B. (1980): Very Low-Grade metamorphism in external parts of the Central Alps: Illite crystallinity, coal rank and fluid inclusion data. - Ecligogae geol. Helv., 73:173-203.
- FREY, M. (1986): Very low-grade metamorphism of the Alps an introduction. Schweiz. Miner. Petrogr. Mitt., 66:63-65.
- FREY, M. (1987): 2. Very low-grade metamorphism of clastic sedimentary rocks. S. 9-58. -In: Low temperature Metamorphism, Frey, M. (ed), 351 S., Blackie, Glasgow.
- FREY, M., HUNZIKER, J.C., JÄGER, E. & STERN, W.B. (1983): Regional distribution of white K-mica polymorphs and their phengite content in the Central Alps. - Contirb. Miner. Petrol. 83:185-197.
- FÜCHTBAUER, H. & GOLDSCHMIDT, H. (1963): Beobachtungen zur Tonmineral-Diagenese. - Intern. Clay Conf., Stockholm, Pergamon Press, 1:99-111.
- GAITZSCH, B.G. (1998): Flysch und Frühmolassen im östlichen Saxothuringikum und im Saxolugikum. Terra Nostra, 2:49-52.

- GANDL, J. (1981): Exkursion in das Paläozoikum des Frankenwaldes (Gebiet nordwestlich der Münchberger Gneismasse). - Jber. Mitt. oberrhein. geol. Ver., N.F. 63:63-73, Stuttgart.
- GEHMLICH, M., TICHOMIROWA, M., LINNEMANN, U., LÜTZNER, H & BOMBACH, K. (1997): Kalibrierung und Korrelation des saxothuringischen Ordoviziums durch die Einzelzirkon-Evaporationsmethode. - SPP-Kolloquium Orogene Prozesse, ihre Quantifizierung und Simulation am Beispiel der Varisciden, 13. - 14.3.1997, Bayreuth. - Terra Nostra, 97/5:43-46.
- GERDES, A., WÖRNER, G. & FINGER, F. (1996): Mantelquellen in variscischen Granitoiden? Terra Nostra, 96:2:75-78.
- GUIDOTTI, C.V. & SASSI, F.P. (1976): Muscovite as a petrogenetic indicator mineral in pelitic schists. N. Jb. Miner. Abh., 127:97-142.
- GUIDOTTI, C.V. & SASSI, F.P. (1986): Classification and Correlation of metamorphic facies series by means of muscovite b0 data from low-grade metapelites. - N. Jb. Miner. Abh., 153:363-380.
- GRADSTEIN, F.M. & OGG, J. (1996): Geological Timescale. Episodes, 19:1+2.
- GREENWOOD, H.J. (1976): Metamorphism at moderate temperatures and pressures. In: Bailey, D.K. & Macdonald, R. (eds.): The evolution of the crystallin rocks. - Academic Press, New York, 187-259.
- GRIM, R.E., BREY, R.H. & BRADLEY, W.F. (1937): The mica in argillaceous sediments. -Amer. Min., 22:813-829.
- GRIM, R.E. (1953): Clay Mineralogy. Mc Graw-Hill, New York, N.Y., 384 S.
- HARTUNG, W. (1938): Flora und Altersstellung des Karbons von Hainchen-Ebersdorf und Borna bei Chemnitz. Abh. Sächs. Geol. L.-A. Freiberg, 18:5-140.
- HEMPEL, G. (1964): Gefügeerscheinungen im Ostthüringischen Schiefergebirge. Abh. dt. Akad. Wiss. Berlin, Kl. Bergbau, Hüttenwesen und Montangeologie, 2:221-258.
- HESSE, R. & DALTON, E. (1991): Diagenetic and low-grade metamorphic terranes of Gaspe Peninsula related to the geological structure of the Taconian and Acadian ororgenic belts, Quebec, Appalachians. - J. metamorphic Geol., 9:775-790.
- HEWITT, D.A. & WONES, D.R. (1972): The effect of cation substitutions on the physikal property of trioctahedral micas. Am. Mineral., 57:103-129.

- HIRT, A.M., LOWRIE, W., JULIVERT, M. & ARBOLEYA, M.L. (1992): Paleomagnetic results in support of a model for the origin of the Asturian arc. - Tectonophysics, 213:321-339.
- HOFMANN, R. (1961): Tektonische Beobachtungen in der Teuschnitzer Kulm-Mulde (Frankenwald). Geol. Jb., 78:819-856.
- HOLDAWAY, M.J. (1971): Stability of andalusite and sillimanite and the aluminium silicate phase diagram. Am. Jour. Sci., 271:97-131.
- HOLL, H.-G. (1995): Die Siliziklastika des Unterdevon im Rheinischen Trog (Rheinisches Schiefergebirge) Detrituseintrag und P,T-Geschichte. Bonner Geow. Schriften, 163 S.
- HUANG, W.-L., LONGO, J.M. & PEVAR, D.R. (1993): An experimental derived model for smectite to illite conversion and its use as a geothermometer. Clays & Clay Minerals, 41:2:162-177.
- HUNZIKER, J.C., FREY, M., CLAUER, N., DALLMEYER, R.D., FRIEDRICHSEN, H.,
 FLEHMING, W., HOCHSTRASSER, K., ROGGWILER, P. & SCHWANDER, H. (1986): The evolution of illite: mineralogical and isotopic data from the Glarus Alps,
 Switzerland. Contirb. Mineral. Petrol., 92:157-180.
- INTERNATIONAL COMMITTE OF COAL PETROLOGY (ed) (1971, 1985): International Handbook of Coal Petrography. Centre National de la Recherche Scientifique, Paris.
- JABOYEDOFF, M. & THELIN, P. (1996): New data on low-grade metamorphism in the Briançonnais domain of the Prealps, Western Switzerland. Eur. J. Mineral., 8:577-592.
- JIANG, W.-T., PEACOR, D.R., ÁRKAI, P., TOTH, M. & KIM, J.W. (1997): TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. - J. metamorphic Geol., 15:267-281.
- JOHNS, W.D., GRIM, R.E. & BRADLEY, W.F. (1954): Quantitative estimations of clay minerals by diffraction methods. J. Sed. Petrol., 24:242-251.
- KIM, I.-S. & SOFFEL, H.C. (1982): Palaeomagnetic results from Lower Paleozoic diabases and pillow lavas from the Frankenwald area (northwestern edge of the Bohemian Massif).
 J. Geophys., 51:1:24-28, Berlin.
- KISCH, H.J. (1980): Incipient metamorphism of Cambro-Silurian clastic rocks from Jämtland Supergroup, central Scandinavian Caledonides, western Sweden: illite crystallinity and "vitrinite" reflectance. - Journal of the Geological Society, 137:271-288, London.

- KISCH, H.J. (1987): Correlation between indicators of very low-grade metamorphism. In: Frey, M. (ed.) 1987: Low temperature metamorphism, Blackie, 227-299.
- KISCH, H.J. (1990): Calibration of the anchizone: a critical comparison of illite "crystallinity" scales used for definition J. metamorphic Geol., 8:31-46.
- KISCH, H.J. (1991): Illite crystallinity: recommendations on sample preparation, x-ray diffraction settings, and interlaboratory samples. J. metamorphic Geol., 9:665-670.
- KLUG, H.P. & ALEXANDER, L.E. (1974): X-ray Diffraction Procedures. 2nd edn., Wiley, New York.
- KÖHLER, H. & HÖLZL, S. (1996): The age of the Leuchtenberger granite (NE Bavaria, Germany) a revision on account of new U-Pb zircon ages. N. Jahrb. Mineral. Mh., 212-222.
- KOSSMAT, F. (1927): Gliederung des varistischen Gebirgsbaues. Abh. Sächs. Geol. L.-A., 1, 39 S., Leipzig.
- KÖSSLER, P., SCHÄTZ, M., SOFFEL, H., TAIT, J., BACHTADSE, V. & LINNEMANN, U. (1996): New Paleozoic sequences in the Thuringer Wald, Saxo-Thuringia. - Annales Geophys. EGS (abstr), 14:1:C86.
- KRUMM, H. (1984): Anchimetamorphose im Anis und Ladin (Trias) der Nördlichen Kalkalpen zwischen Arlberg und Kaisergebirge - ihre Verbreitung und deren baugeschichtliche Bedeutung. - Geol. Rundsch., 73:223-257.
- KRUMM, S. (1992): Illitkristallinität als Indikator schwacher Metamorphose Methodische Untersuchungen, regionale Anwendungen und Vergleiche mit anderen Parametern. -Erlanger geol. Abh., 120:1-75.
- KÜBLER, B. (1967a): La cristallinité de l'Illite et les zones tout a fait superieures du métamorphisme. In: Colloque Etages Tectoniques. A la Baconniere: 105-122, Neuchatel.
- KÜBLER, B. (1967b): Anchimétamorphisme et schistosité. Bull. Centre Rech. Pau S.N.P.A, 1:259-278.
- KÜBLER, B. (1968): Evaluation quantitative du métamorphisme par la cristallinité de l'illite.
 Etat des progès réalisés ces dernières années. Bull. Centre Rech. Peau, S.N.P.A, 2:385-397.

- KÜBLER, B. (1975): Diagenese anchimétamorphisme et métamorphisme. Institut national de la recherche scientifique Pétrole, Quebec.
- KÜBLER, B., PITTON, J.L., HEROUX, Y., CHAROLLAIS, J. & WEIDMANN, M. (1979): Sur le pouvoir reflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes prealpines, helvetiques et penniniques. - Eclogae geol. Helv., 72:347-373.
- KÜBLER, B. (1984): Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. In: Thérmométrie et barométrie géologiques. -Lagache, M. (ed.), Soc. Franç. Minér. Crist., Paris, 489-596.
- KÜBLER, B. (1990): « Cristallinité » de l'illite et mixed-layers: brève révision. Schweiz. Mineral. Petrogr. Mitt., 70:89-93.
- KUNERT, V., RÖLL, S., ROTTHAUS, B. & FRANKE, W. (1998): Heat Advection in a Fault Zone the Case of the Frankenwald Transverse Zone. Acta Universitatis Carolinae, Geologica, 42:2:293-294.
- KROHE, A. (1992): Structural evolution of intermediate-crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. - Tectonophysics, 205:357-386.
- KROHE, A., ABDULLAH, N. & GRAUERT, B. (1994): Mikrogefügeuntersuchungen am Leuchtenberger Granit und an Metagraniten der Mylonitzone von Floss-Altenhammer. -KTB Rep. 38: 94-2.
- LAMBELET, E., MROZEK, H. & SAMTLEBEN, C. (1967): Petrostratigraphie, Fazies und Sedimentationsverhältnisse des Kulms an der Südostflanke der Teuschnitzer Mulde (Frankenwald). - Mitt. Geol. Staatsinst. Hamburg, 36:131-168, Hamburg.
- LEE, J.H., AHN, J.H. & PEACOR, D.R. (1985): Textures in layered silicates: progressive changes through diagenesis and low-temperature metamorphism. Jour. sed. petrol., 55:4:532-540.
- LEVINE, J.R. & DAVIS, A. (1984): Optical anisotropy of coals as an indicator of tectonic deformation, Broad Top Coal Field, Pennsylvania. Bull. Geol. Soc. Amer., 95:100-108.
- LEZZERNI, M., SARTORI, F. & TAMPONI, M. (1995): Effect of amount of material used on sedimentation slides in the control of illite "crystallinity" measurements. - Eur. J. Mineral., 7:819-823.

- LORENZ, W. (1957): Die Schwereanomalie von Auma. Tektonisch-gefügekundliche Untersuchungen im ostthüringischen Schiefergebirge. - Freiberger Forschungshefte, C 39, 74 S.
- LOTH, G., HÖLL, R., RITTER, A. & KENNEDY, A. (1997): U-Pb-SHRIMP-dating of zircons from the Henneberg intrusion (Thuringia). Tagungsband zur 149. Tagung der Deutschen Geologischen Gesellschaft, 78 S.
- LUDWIG, V. (1972): Die Paragenese Chlorit, Muscovit, Paragonit und Margarit im "Griffelschiefer" des Ordoviziums in NE-Bayern (Mit einem Beitrag zum Problem der Illit-Kristallinität). - N. Jahrb. f. Geol. u. Paläont. Monatsh. 546-560.
- MARESCH, W.V. (1977): Experimental studies on glaucophanne: An analysis of present knowlledge. Tectonophysics, 43:109-125.
- MATTE, P. (1991): Accrettionary history and crustal evolution of the Variscan belt in western Europe. Tectonophysics, 177:25-56.
- MATTE, P., MALUSKI, H., RAJLICH, P. & FRANKE, W. (1990): Terrane boundaries in the Bohemian massif: result of large-scale Variscan shearing. Tectonophysics, 177:151-170.
- MAXWELL, D.T. & HOWER, J. (1967): High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series. Amer. Min., 52:843-856.
- MC KERROW, W.S., DEWEY, J.F., SCOTESE, C.F. (1991): The Ordovician and Silurian development of Iapetus Ocean. Paleontology, 44:165-178.
- MEINEL, G. (1972): Petrographische und petrochemische Untersuchungen zum Charakter der synorogenen Metamorphose im Ostthüringer Schiefergebirge. Chemie der Erde, 1:31:1-92.
- MEINEL, G. (1993): Die Bildung der Gangmineralisationen Thüringens. Geow. Mitt. v. Thüringen, 1:1-111, Weimar.
- MERRIMAN, R.J., ROBERTS, B. & PEACOR, D.R. (1990): A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contrib. Mineral Petrol., 106:27-40.
- MERRIMAN, R.J., ROBERTS, B., PEACOR, D.R. & HIRSONS, S.R. (1995): Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland.

- J. metamorphic Geol., 13:559-576.

- MERRIMAN, R.J. & PEACOR, D.R. (1999): 2. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. - In: Frey, M. & Robinson, D. (1999): Low-Grade Metamorphism. 313 S., Blackwell Science.
- MIYASHIRO, A. (1961): Evolution of metamorphic belts. J. Petrology, 2: 277-311.
- NEUROTH, H. (1997): K / Ar-Datierungen an detritischen Muskoviten "Sicherungskopien" orogener Prozesse am Beispiel der Varisciden. GAGP, 72:1-143.
- NIETO, F. & SANCHEZ-NAVAS, A. (1994): A comparative XRD and TEM study of the physical meaning of the white mica "crystallinity" index. Eur. J. Mineral., 6:611-621.
- O'BRIEN, P.J. (1997): HP Granulites of the Variscides: product or cause of the regional HT-LP metamorphism. - Terra Nostra, 79:5:116-120.
- O'BRIEN, P.J. (1999): Variscan high temperature metamorphism: possible causes, consequenses of different models, and compatibility with the rocks. Terra Nostra, 99:1:158.
- OKRUSCH, M., SEIDEL, E., SCHÜSSLER, U. & RICHTER, P. (1989): Geochemical characteristics of metabasites in different tectonic units of the northeast Bavarian crystalline basement. In: Emmermann, R. & Wohlenberg, J. (Hrsg.): The German Continental Deep Drilling Program (KTB): 67-81.
- ONKEN, O. (1997): How to transform a magmatic arc and a orogenic root material paths in oblique collision and the Mid-German Crystallin Rise. Geol. Rundschau, 86:2-20.
- PADAN, A., KISCH, H.J. & SHAGAM, R. (1982): Use of the lattice parameter b0 of dioctahedral illite / muscovite for the characterization of P / T gradients of incipient metamorphism. - Contr. Mineral. Petrol., 79:85-95.
- PEACH, H.-J. (1966): Zur Tektonik des Ostthüringischen Schiefergebirges im Raum Schleiz - Mühltroff. - Geologie, 15:981-988.
- PETSCHICK, R. (1989): Zur Wärmeentwicklung im Kalkalpin Bayerns und Nordtirols (Inkohlung und Illitkristallinität). Frankfurter geowiss. Arb., Serie C, Bd. 10, 259 S.
- PFEIFFER, H. (1970): Zum inneren Bau des Ostthüringischen Kulm-Synklinoriums. Jb. Geol. Mitt. Zentr. Geol. Inst. Berlin 5/6:165-173.
- PFEIFFER, H., BLUMENSTENGEL, H. & WIEFEL, H. (1995): Kapitel 4.3.5 Dinant

(Unterkarbon) S. 147-166. - In: Seidel, G. (ed.) Geologie von Thüringen, 556 S., Schweizerbart, Stuttgart.

- PUPIN, J.P. (1980): zircon and granite petrology. Contrib. Mineral. Petrol. 73:207-220.
- QUESADA, C. (1991): Geological constrains on the Paleozoic tectonic evolution to tectonostratigraphic terranes in the Iberian massif. Tectonophysics, 185:225-245.
- RADOSLOVICH, E.W. (1960): The structure of muscovite, KAl₂(Si₃Al)O₁₀(OH)₂. Acta Crystallogr. 13:919-932.
- RAGOT, J.P. (1977): Contribution à l'etude de l'évolution des substances carbonées dans les formationes géologiques. Thése Univ. P. Sabatier, Toulouse.
- RAMSDELL, L.S. (1947): Studies on silicon carbide. Am. Mineral. 32:64-82.
- REUTER, A. (1985): Kornabhängigkeit von K-Ar Datierungen und Illit-Kristallinität anchizonaler Metapelite und assoziierter Metatuffe aus dem östlichen Rheinischen Schiefergebirge. - Göttinger Arb. Geol. Paläont. 27:1-91.
- RIEDER, M., GUIDOTTI, C.V., SASSI, F.P. & WEISS, Z. (1992): Muscovites: d₀₆₀ versus d_{33-1.060} spacing: its use for geobarometric purposes. Eur. J. Mineral., 4:843-845.
- RIES, A.C. & SCHACKLETON, R.M. (1976): Patterns of strain variation in arcuate fold belts. Phil. Trans. R. Soc. Lond. A., 283:281-288.
- ROBERTS, D. (1988): Timing of Silurian to middle Devonian deformation in the Caledonides of Scandinavia, Svalbard and E Greenland. - In: Harris, A.L., Fettes, D.J. (eds): The Caledonian-Appalachian orogen. -Geol. Soc. Spec. Publ., 38:429-436.
- ROBERTS, B., MERRIMAN, R.J. & PRATT, W. (1991): The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: implications for the timing of metamorphism in the Welsh Basin. - Geological Magazine, 128:633-645.
- ROBINSON, D., WARR, L.N. & BEVINS, R.E. (1990): The illite 'crystallinity' technique: a critical appraise of its precision. J. metamorphic Geol., 8:333-344.
- ROLL, S. (1998): Granitoide und deren Kontaktgesteine in der Frankenwälder Querzone -Petrographische und zirkontypologische Untersuchungen. - Unveröffentlichte Diplomarbeit, IGL-Gießen.
- SASSI, F.P. (1972): The petrologic and geologic significance of the b0 value of potassic

white micas in low-grade metamorphic rocks. An application to the Eastern Alps. -Tschermaks Min. Petr. Mitt., 18:105-113.

- SASSI, F.P. & SCOLARI, A. (1974): The b0 value of the potassic white micas as a barometric indicator in low-grade metamorphism of pelitic schist. Contr. Mineral. Petrol., 45:143-152.
- SCHAER, J.P. & PERSOZ, F. (1976): Aspects structuraux et petrographiques du Haut Atlas calcaire de Midet (Maroc). - Bull. Soc. geol. France, 18:1239-1250.
- SCHÄFER, F. (1997): Krustenbilanzierung eines variscischen Retrokeils im Saxothuringikum. - Unveröffentlichte Dissertation, 129 S., FU-Berlin.
- SCHÄFER, J. (1996): Mikrosondenuntersuchungen an Geröllen und detritischen Mineralen im Flysch des Saxothuringikums: Ein Beitrag zur Exhumierungsgeschichte des Liefergebietes. - Unveröffentlichte Dissertation, 221 S., J.-L. Universität, Gießen.
- SCHÄFER, J. (1997): Electron microprope study of detrital amphiboles from Famennian synorogenic clastic sediments of the Saxothuringian belt (Erbendorf Paleozoic, NE-Bavaria, Germany): Consequences for provenance and geotectonic development. -Geodinamica Acta, 10:4:125-136, Paris.
- SCHÄFER, J., NEUROTH, H. AHRENDT, H. DÖRR, W. & FRANKE, W. (1997): Accretion and exhumation at a Variscan activ margin, recorded in the Saxothuringian flysch. - Geol. Rundsch., 86:599-611.
- SCHERRER, P. (1918): Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger. Nachr. Math. Phys., 2:98-100.
- SCHIED, G. (1986): Komplexbericht Thüringisch-Vogtländisches Schiefer-gebirge. Report VEB Kombinat Geophysik Leipzig, 151 S.
- SCHOLTZ, R. (1930): Das varistische Bewegungsbild entwickelt aus der inneren Tektonik eines Profiles von der Böhmischen Masse bis zum Massif von Brabant, - Fortschr. Geol. Paläont. 8:25:235-316.
- SCHROEDER, E. (1958): Schiefergebirgstektonik und Grundgebirgstektonik in der Hirschberg-Greizer Zone (Ostthüringen). Geologie. 7:465-483.
- SCHROEDER, E. (1965): Schieferungsstudien in Ostthüringen. Mber. dtsch. AdW., 7:1:57-62, Berlin.

- SCHROEDER, E., BANKWITZ, P. & PEACH, H.J. (1965): Zur Tektonik des Thüringisch-Vogtländischen Schiefergebirges. - Ber. Geol. Ges. DDR, 10:3:265-278.
- SCHROEDER, E. (1966a): Beiträge zur Schiefergebirgstektonik in Ostthüringen. Abh. z. Geotektonik, 23, 23 S.
- SCHROEDER, E. (1966b): Zur tektonischen Zonen- und Stockwerksgliederung des Thüringisch- Vogtländischen Schiefergebirges. Geologie, 15:8:973-980.
- SCHROEDER, E. (1993): Subhorizontale Gefüge im Thüringisch-Vogtländischen Schiefergebirge. Z.geol. Wiss., 21:1/2:225-229, Berlin.
- SCHÜLLER, A. (1961): Die Druck-, Temperatur- und Energiefelder der Metamorphose. -Neues Jb. Min. Abh., 96:250-290.
- SCHWAN, W. (1958): Untervorschiebungen und Aufbruchfalten. N.Jb. Geol. Paläont. Mh. 356-377, Stuttgart.
- SCHWAN, W. (1968): Zur Kinematik einiger Hauptstrukturen im nordostbayerischen Variszikum (Frankenwälder Querstörungen, Thüringer Untervorschiebungen, Münchberger Gneismasse). - Jber. Mitt. oberr. geol. Ver., 50:127-141, Stuttgart.
- SEHM, K. et al. (1989): Einschätzung Rohstofführender Grundgebirgseinheiten S-Teil DDR,
 1:100000 Abschlußbericht G4 Thüringisch Vogtländisches Schiefergebirge. Report. BGR-Archiv Nr. 1004690, Zentrales Geologisches Institut, Berlin.
- SMITH, J.V. & YODER, H.S., Jr. (1956): Experimental and theoretical studies of the mica polymorphs. - Mineral. Mag. 31:209-235.
- SRODON, J. (1984): X-ray powder diffraction identification of illitic materials. Clays & Clay Minerals, 32/5:337-349.
- SRODON, J. & EBERL, D.D. (1984): Illite In: micas, Bailey, S.W. (ed), Reviews in Mineralogy, 13:495-544.
- STEIN, E. (1988): Die strukturgeologische Entwicklung im Übergangsbereich Saxothuringikum/Moldanubikum in NE-Bayern. - Geologica Bavarica, 92:5-131.
- SUESS, F.-E. (1912): Vorläufige Mitteilung über die Münchberger Deckscholle. Sitzungsbericht Akad. Wiss., Wien, Math.-Naturwiss. K121, Abt. Iia, 10:253.
- SWEENY, J.J. & BURNHAM, A.K. (1990): Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. - Am. Ass. of Petrol. Geol. Bull., 74:10:1559-
1570.

- TAIT, J.A., BACHTADSE, V., SOFFEL, H.C. (1994): Silurian palaeogeography of Armorica: new paleomagnetic data from central Bohemia. - J. Geophys. Res., 99:2897-2907.
- TAIT, J.A., BACHTADSE, V., FRANKE, W. & SOFFEL, H.C. (1997): Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constrains. -Geol. Rundsch., 86:585-598.
- TAYLOR, G.H. (1971): Carbonaceous matter: a guide to the genesis and history of ores. -Soc. Min. Geol. Japan, Spec. Issue 3, Tokyo, 283-288.
- TEICHMÜLLER, M. & TEICHMÜLLER, R. (1981): The significance of coalification studies to geology - a review. - Bull. Centre Rech. Expl. - Prod. ELF-Aquitaine, 5:491-534.
- TEICHMÜLLER, M. (1987): Organic material and very low-grade metamorphism. 114 161. - In: Low temperature metamorphism, Frey, M. (ed.), 351 S., Blackie, Glasgow.
- TRAPP, E., ZELLMER, H., BAUMANN, A., METZGER, K. & WACHENDORF, H. (1998): Die Kieselgesteinsfazies des Unterkarbons im Harz - Biostratigraphie, U-Pb-Einzelzirkon-Alter, Petrographie und Sedimentologie. - Terra Nostra, 3/V368.
- TRENCH, A. & TORSVIK, T.H. (1991): A revised Paleozoic apparent polar wander path for southern Britain (eastern Avalonia). Geophys. J. Int., 104:227-233.
- VAN DER VOO, R. (1979): Paleozoic assembly of Pangea: a new plate tectonic model for the Taconic, Caledonian and Hercynian orogenies. - EOS Trans Am. Geophys. Union 60:241.
- VELDE, B. (1965): Experimental determination of muscovite polymorph stabilities. Amer. Journ., 262:886-913.
- VELDE, B. (1977): Clays and Clay Minerals in Natural and Synthetic Systems.-Developments in Sedimentology 21, Elsevier, Amstedam.
- VELDE, B. & NICOT, E. (1985): Diagenetic clay mineral composition as a function of pressure, temperature and chemical activity. - Jour. Sed. Petrology, 55:4:541-547.
- VELDE, B. (1992): Introduction to clay minerals. Chapman & Hall, 198 S.

VELDE, B. & VASSEUR, G. (1992): Estimation of the diagenetic smectite to illite

transformation in time-temperature space. - Americ. Mineralogist, 77:967-976.

- WARR, L.N. & RICE, H.N. (1994): Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. - J. metamorphic Geol., 12:141-152.
- WARR, L.N. (1996): Standadized clay mineral crystallinity data from the very low-grade metamorphic facies rocks of southern New Zealand. Eur. J. Mineral., 8:115-127.
- WASSOJEWITSCH, N.B., KORTSCHAGINA, J.I., LOPATIN, N.W., TSCHERNY-SCHEW, W.W. & TSCHERNIKOW, K.A. (1969): Die Hauptphase der Erdölbildung. - Z. angew. Geol., 15:611-621.
- WATSON, E.B. & HARRISON, T.M. (1983): Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. - Earth Planet. Sci. Lett., 64:295-304.
- WEAVER, C.E. (1960): Possible uses of clay minerals in search for oil. Bull. Amer. Assoc. Petrol. Geol., 44:1505-1518.
- WEAVER, C.E. & BROEKSTRA, B.R. (1984): Illite-mica. In: Shale-Slate Metamorphism in Southern Appalachians. (eds Weaver, C.E. et al.), Developments in Petrology, 10:1441-152, Elsevier, Amsterdam.
- WEBER, K. (1972a): Kristallinität des Illits in Tonschiefern und andere Kriterien schwacher Metamorphose im nordöstlichen Rheinischen Schiefergebirge. - N. Jb. Paläont. Abh., 141:3:333-363.
- WEBER, K. (1972b): Notes on determination of illite crystallinity. N. Jb. Min. Monatsh., 267-276.
- WEISE, G. (1972): Gneisgerölle in tiefoberdevonischen Konglomeraten des Vogtlandes und ihre paläogeographische Bedeutung. Geologie, 21:69-83, Berlin.
- WILSON, A.J.C. (1965): Röntgenstrahl-Pulverdiffraktometrie Mathematische Theorie. -139 S., Philips Technische Bibliothek, Endhoven.
- WURM, A. (1925): Geologie von Bayern. 1. Nordbayern, Fichtelgebirge, Frankenwald. In:Hdb. Bodenschätze Deutschlands, II. Abt. 2. Bd., IX, 373 S., Borntraeger, Berlin.
- YANG, C. & HESSE, R. (1991): Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, External Domain of southern Canadian Appalachians. - Clay Minerals, 26:211-231.

YODER, H.S. & EUGSTER, H.P. (1955): Synthetic and natural muscovites. - Geochi. Cosmochi, Acta, 1955:8:225-280.

Anhang

ANHANG

Tabellen:

Ia	"Frey"-Standards: Probenverzeichnis, RDA-Meßwerte zur Illit- und Chloritkristallinität	2
Ib	CIS-Standards: Probenverzeichnis, RDA-Meßwerte zur Illit- und Chloritkristallinität	3
II	Probenverzeichnis, Hoch- und Rechtswerte, stratigraphische Lage, Halbhöhenbreite des 10 Å-Illits, Paläotemperatur, Druckparameter, Vitrinitreflexionswerte.	4
III	Probenverzeichnis, Aufbereitungsart, Tonmineralverhältnis, 10 Å-Illit und 7 Å-Chlorit: Halbhöhenbreite, und deren Umrechnung in "Frey"- und CIS-Werte	8
IV	RDA-Meßwerte - 10 Å-Illit: Proben-Nr., Aufbereitungsart, Anzahl der Messungen, Halbhöhen- breite, Standardabweichung, Peaklage, Peakintensität, Integralbreite, BB1-Index, Esquevin-Index	13
V	RDA-Meßwerte - / Å-Chlorit: Proben-Nr., Aufbereitungsart, Anzahl der Messungen, Halbhöhen- breite, Standardabweichung, Peaklage, Peakintensität, Integralbreite, BB1-Index, Esquevin-Index	18
VI	RDA-Meßwerte - 14 Å-Chlorit: Proben-Nr., Aufbereitungsart, Anzahl der Messungen, Halbhöhen- breite, Standardabweichung, Peaklage, Peakintensität, Integralbreite, BB1-Index, Esquevin-Index	23
VII	Vitrinitreflexionsmessungen, RDA-Meßwerte für 5Å-Illit und 4,26Å Quarz	28

Anhang: Tabelle Ia

MF993

MF996a

MF996 b

MF1030

MF1031 a

MF1031 b

0,218

0,234

0,235

0,256

0,320

0,347

4

3

4

4

3

4

4,441

5,604

17,124

2,987

6,131

7,485

0,292

0,300

0,293

0,330

0,406

0,496

14,210

14,210

14,187

14,142

14,210

14,165

426

128

110

407

232

194

· · · · · · · · · · · · · · · · · · ·				40 Å	111:4	Deals				
Drohan				10 A	- Illit -	Реак	Internal	Deals	Deels	Deals
Proben			Frenkfurt		worto	c1	Broito	Peak-	reak-	Fläche
Nummer		ASCO			werte	51		۸	Counto	Counto
ALL 72-112	0.847	0.710	0.810	0.720	2	0.050	0.864	10.005	1229	11/691
ALL/ 3-113	0,047	0,710	0,010	0,732	3	0,950	0,004	10,095	1320	104697
G33 G34 o	0,300	0,390	0,340	0,372	3	0,940	0,490	10,015	2150	104007
G34 a G34 b	0,379	0,420	0,330	0,330	J ⊿	0,925	0,404	10,013	2258	08824
G 36-6	0.641	-	-	0,333	4	0,207	0,430	10,003	2230	162062
G 30-0	0,041	0,330	0,300	0,303	3	0,373	0,032	10,110	1712	07702
G36-21b	0,470	0,470	0,420	0,455	3	0,400	0,571	10,049	1/12	76242
G36-215	0.585	-	-	0,414	4	0,497	0,550	10,000	2220	211227
G30-35 a G36-35 b	0,565	0,020	0,520	0,317	J ⊿	0,995	0,030	10,003	3602	211327
G30-35 D	0 207	-	- 0.260	0,475	4	2 /72	0,017	10,072	846	33036
G37-1 a	0,237	0,550	0,200	0,303	1	2,472	0,401	0.003	756	20454
G37-1 D G37 7	0 755	-	-	0,290	4	2,192	0,390	9,992	1657	29404
G37-7 ME002	0,755	0,700	0,610	0,570	3	1,457	0,701	10,152	1600	17004
ME000-	0,246	0,210	0,210	0,223	4	1,560	0,294	10,003	1000	47094
WF9968	0,230	0,190	0,210	0,207	3 1	1,004	0,200	0,000	2021	60046
WF4020	0.247	-	-	0,220	4	3,33U 1 174	0,298	10,000	2041	107074
WF1030	0,347	0,310	0,320	0,321	4	1,1/4	0,410	10,037	2098	10/9/4
WF1031 a	0,387	0,370	0,370	0,369	3	1,133	0,479	10,037	2595	124386
WF1031 D	-	-	-	0,395	4	2,509	0,360	10,037	2/31	130030
Bashan		M- 0	<i>/</i> A	-Chlorit-	Peak	Deals	Deals	5 A	- IIIIt -	Реак
Proben	FWHIM	weis-	-1	Integral-	Peak-	Peak-	Peak-	Реак-	Peak-	
Nummer	IGL	werte	S 1	Breite	Lage	Intensitat	Flache	Lage	Intensitat	
ALL 70 440	Δ°2Θ	n	%	Δ°2Θ	A 7.000	Counts	Counts	A	Counts	
ALL/3-113	0,256	3	1,624	0,374	7,093	1491	55859	4,997	526	
G33	0,233	3	0,899	0,302	7,093	1207	39010	4,986	1315	
G34 a	0,222	3	1,639	0,292	7,098	951	27100	4,986	1570	
G34 b	0,222	4	0,432	0,308	7,093	821	23807	4,983	1309	
G 36-6	0,246	3	0,242	0,330	7,087	5349	1/0/11	4,991	1535	
G36-21a	0,256	3	1,563	0,399	7,076	1035	3/8/5	4,991	1032	
G36-21b	0,214	4	2,250	0,289	7,087	1257	34973	4,997	/13	
G36-35 a	0,279	3	3,154	0,332	7,087	411	16170	5,005	1510	
G36-35 b	0,225	4	2,765	0,320	7,081	/2/	21472	5,003	1752	
G37-1 a	0,244	3	1,709	0,328	7,093	1485	46367	4,989	512	
G37-1 b	0,239	4	2,115	0,327	7,081	1380	43436	4,986	395	
G37-7	0,235	3	0,426	0,326	7,087	3411	108454	4,994	797	
MF993	0,205	4	2,463	0,268	7,087	1996	52845	4,994	755	
MF996a	0,206	3	2,427	0,277	7,098	519	14315	4,983	1012	
MF996 b	0,213	4	6,131	0,282	7,093	382	10280	4,994	764	
MF1030	0,244	4	1,546	0,331	7,081	1830	59182	5,005	1231	
MF1031 a	0,265	3	0,582	0,322	7,093	1687	62915	4,997	1309	
MF1031 b	0,290	4	0,048	0,360	7,093	1209	43511	0,005	1110	
			14 A	-Chlorit-	Peak			4,26 A	- Quarz -	Peak
Proben	FWHM	Meß-		Integral-	Peak-	Peak-	Peak-	Peak-	Peak-	
Nummer	IGL	werte	S1	Breite	Lage	Intensität	Flache	Lage	Intensität	
ALL 70 440	Δ~2Θ	n	% 10.400	Δ~2Θ	A			A	Counts	
ALL/3-113	0,359	3	10,430	0,417	14,210	102	10000	4,201	099	
G33	0,248	3	3,080	0,323	14,187	33/ 250	10900	4,201	209	
G34 a	0,210	3	3,045 5,700	0,203	14,210	200	7070	4,201	298	
G34 D	0,222	4	0,100 2,040	0,294	14,187	2/1	1913	4,201	2/0	
G 30-0	0,254	3	3,010	0,328	14,165	9/0	32U16	4,201	19	
G36-21a	0,268	3	3,911	0,329	14,210	0.40	5206	4,261	424	
G36-21D	0,244	4	4,687	0,293	14,165	243	7118	4,261	500	
G36-35 a	0,305	3	13,627	0,316	14,074	79	2494	4,261	137	
G36-35 b	0,226	4	11,951	0,290	14,119	128	3/10	4,261	180	
G37-1 a	0,297	3	5,379	0,398	14,233	327	13027	4,261	1/4	
G37-1 b	0,281	4	5,983	0,362	14,187	339	12284	4,261	191	
G37-7	0,272	3	2,407	0,354	14,187	597	21159	4,261	112	

4,261

4,261

4,261

4,261

4,261

4,261

97

149

131

181

90

77

12431

3835

3219

13435

9420

7998

Anhang: Tabelle Ib

		10 Å	- Illit -	Peak	7 Å -	Chlorit	- Peak
Proben-	Auf-		Peak-	Peak-		Peak-	Peak-
Nummer	bereitung	FWHM	Lage	Intensität	FWHM	Lage	Intensität
		$\Delta^{\circ}2\Theta$	Å	Counts	$\Delta^{\circ}2\Theta$	Å	Counts
SW1a	H2O2	0,473	10,026	531	0,349	7,098	353
SW1b	H2O2	0,467	10,026	535	0,347	7,115	357
SW1-CIS	Warr	0,630	10,146	533	0,340	7,131	326
SW2a	H2O2	0,348	10,049	648	0,308	7,173	137
SW2b	H2O2	0,367	10,037	638	0,329	7,167	130
SW2-CIS	Warr	0,470	10,101	627	0,300	7,198	104
SW4a	H2O2	0,322	9,992	1356	0,283	7,081	1136
SW4b	H2O2	0,328	9,981	1388	0,286	7,070	1176
SW4-CIS	Warr	0,380	10,081	853	0,320	7,124	616
SW6a	H2O2	0,263	9,981	1100	0,251	7,065	1518
SW6b	H2O2	0,265	10,003	1105	0,255	7,081	1513
SW6c	US	0,249	10,037	1182	0,249	7,093	1745
SW6d	US	0,252	10,026	1179	0,250	7,081	1748
SW6-CIS	Warr	0,250	10,082	585	0,250	7,106	886

K2 558450 445755 - 0,380 195 8,99 - K3 559850 447800 sCd2 0,296 250 8,99 - K6 558740 444033 (Cd1 0,241 280 8,99 - K6 558740 446335 wCd2 0,190 335 8,99 - K8 558826 448380 CT1 0,214 315 9,00 - K14 560720 450690 (Cd1 0,280 275 8,99 - K14 560720 450690 (Cd1 0,280 275 8,99 - K18 558800 448197 (Kd1 0,202 300 9,00 - K20 568005 448197 (Kd1 0,233 300 - - K21 559805 447690 (Cd1 0,232 235 8,99 - K24 559900 444670 wCd2	Probe-Nr.	Hochwert	Rechtswert	Stratigraphie	∆°2⊖	(°C)	6d(33-1,060)	Rm %
K3S58850447807SCd20.2662509.00-K6S58740444327ICd10.2412908.99-K7S58345446353WCd20.1903358.99-K8S58935446360ICd10.2143159.00-K11S60220450580WCd20.2143158.99-K14S60720450800ICd10.2283058.99-K14S58460448210ICd10.2233009.00-K18S58640448212ICd10.2233009.00-K20S68005448212ICd10.2233009.00-K21S59850447685ICd10.2243009.00-K22415S60805444810WCd20.3222358.99-K22455S69805444670WCd10.226300K22455S58910444670WCd20.322300K23S58650444670ICd10.2173159.00-K24S58940444670ICd10.2243058.99-K25S58930444670ICd10.2243058.99-K26S5894044670ICd10.2243058.99-K27S5868044670ICd10.2243058.99- <th< th=""><th>K2</th><th>558450</th><th>445755</th><th>-</th><th>0,380</th><th>195</th><th>8,99</th><th>-</th></th<>	K2	558450	445755	-	0,380	195	8,99	-
K555864.54443271Cd10.2412908.99.K65687.404446331Cd10.1903358.99.K75583.45446535NCd20.1903358.99.K85583554463501Cd10.1183258.99.K1560220440580NCd20.2512858.99.K115607204508001Cd10.2283058.99.K175538004482501Cd10.2023008.99.K18568640444817K1Cd10.2283009.00.K205608654448171Cd10.2353009.00.K215589004446001Cd10.2283009.01.K245608654447681Cd10.2293009.01.K245608604476861Cd10.228300K255580504448001Cd10.228300K265590404468651Cd10.2133159.01.K265598404463001Cd10.2143358.99.K265598404463001Cd10.2133159.00.K275888054463001Cd10.228300K285588134463001Cd10.2143358.99.K27 <th>K3</th> <th>559850</th> <th>447800</th> <th>sCd2</th> <th>0,296</th> <th>250</th> <th>9,00</th> <th>-</th>	K3	559850	447800	sCd2	0,296	250	9,00	-
K65587404440331Cd10.2602758.99.K75693454463601Cd10.1983358.99.K8558520446360CT10.2143159.00.K11560220450580wCd20.2512858.99.K145504204405001Cd10.2283058.99.K17559404462501Cd10.2233008.99.K18558640448187k1Cd10.2233009.00.K205600554482121Cd10.2333009.01.K2155980544476851Cd10.2283009.01.K22A15560865444690wCd20.3072469.02.K23558905444690wCd20.3072468.99K245590054446901Cd10.2183159.00K245590054446901Cd10.2173159.00K25559004446901Cd10.2173159.00K26559804446901Cd10.2173159.00K26559804446901Cd10.2243058.99K27558904446901Cd10.2243058.99K28559840446201C	K5	558645	444327	tCd1	0,241	290	8,99	-
K7559346446835wCd20,1903358,99.K8568820446860CI0,2143159,00.K11560220450880wCd20,2512858,99.K145607204508001Cd10,2263258,99.K175594804462501Cd10,2203208,99.K18558640448187kICd10,2023208,99.K205680504478551Cd10,2333009,00.K215598504476551Cd10,230300K225680554476551Cd10,2323009,01.K24558950444670wCd20,3072459,02.K25558950444670wCd20,3072469,02.K265589504446701Cd10,2133159,01.K275588594467601Cd10,2243058,99.K285588504467601Cd10,2243058,99.K305596704467601Cd10,2243058,99.K315598404467601Cd10,2243058,99.K335606304477301Cd10,2243058,99.K345598404468201Cd10,2243058,99.K3	K6	558740	444093	tCd1	0,260	275	8,99	-
K8 558935 446360 1Cd1 0,198 325 8,99 - K9 558520 446340 CT1 0,214 315 9,00 - K11 560220 450580 wCd2 0,251 28,59 8,99 - K14 560720 450900 1Cd1 0,260 275 8,99 - K18 558840 448620 1Cd1 0,228 305 8,99 - K19 558900 448600 1Cd1 0,229 300 9,01 - K21 559055 444690 wCd2 0,322 235 8,99 - K23 558055 444490 wCd2 0,322 235 8,99 - K24 559005 444500 1Cd1 0,228 300 - - K24 558900 446760 1Cd1 0,217 315 9,00 - K25 558900 446760 1Cd1 <th>K7</th> <th>559345</th> <th>446535</th> <th>wCd2</th> <th>0,190</th> <th>335</th> <th>8,99</th> <th>-</th>	K7	559345	446535	wCd2	0,190	335	8,99	-
K9558520448340CT10.2143159.00.K11560220450580wCd20.2512858.99.K12559480446250fCd10.2602758.99.K18558640444817kfCd10.2023208.99.K19558900448600fCd10.2353009.00.K205600654482121Cd10.2353009.00.K215598504476851Cd10.2293009.01.K22A1556086644470wCd20.3222358.99.K22558510444670wCd20.3072459.02.K245599004443001Cd10.228300K25559000444670wCd20.3072459.00.K265599004446301Cd10.2133159.00.K265599004467601Cd10.2133159.01.K265598054464151Cd10.2043259.99.K305598704467531Cd10.2063259.91.K335601304462101Cd10.2273058.99.K3466040447353wCd20.2213108.99.K355605004446151Cd10.2273058.99. <th< th=""><th>K8</th><th>558935</th><th>446360</th><th>tCd1</th><th>0.198</th><th>325</th><th>8.99</th><th>-</th></th<>	K8	558935	446360	tCd1	0.198	325	8.99	-
K11560220450880wCd20.2512858.99-K145607204509001Cd10.2283058.99-K175594804448187KIC10.2023208.99-K185589004448107KIC10.2283009.00-K2055995544482121Cd10.2353009.01-K224155608604475101Cd10.2283009.01-K224155608604475101Cd10.228300K22415560805444670wCd20.3072459.02-K245590054446701Cd10.228300K255590044467601Cd10.2083208.99-K265590404467601Cd10.2133159.00-K275585904467601Cd10.2133159.00-K28559134463051Cd10.2093208.99-K315598404463151Cd10.2243058.99-K335601304486301Cd10.2243058.99-K34560640447535wCd20.2513108.95-K355605004476201Cd10.2243059.00-K36560500447535wCd20.2213108.95- <th>К9</th> <th>558520</th> <th>448340</th> <th>CT1</th> <th>0.214</th> <th>315</th> <th>9.00</th> <th>-</th>	К9	558520	448340	CT1	0.214	315	9.00	-
K14 560720 450900 fCd1 0,260 275 8,99 - K17 559480 446250 fCd1 0,202 320 8,99 - K18 558600 448187 kfCd1 0,202 320 8,99 - K19 558905 444600 fCd1 0,235 300 9,00 - K21 559955 4447685 fCd1 0,223 300 9,01 - K22A15 560860 4447510 WCd2 0,307 245 9,02 - K22A15 558005 444490 WCd2 0,307 245 9,00 - K24 558005 444500 ICd1 0,208 300 - - K25 559000 446300 ICd1 0,217 315 9,00 - K26 559870 446300 ICd1 0,213 315 9,01 - K30 559870 446300 ICd1 0,226 325 9,01 - K33 560500 <td< th=""><th>K11</th><th>560220</th><th>450580</th><th>wCd2</th><th>0.251</th><th>285</th><th>8.99</th><th>-</th></td<>	K11	560220	450580	wCd2	0.251	285	8.99	-
K17 S59480 446250 fCd1 0.228 305 8.99 - K18 S58640 448177 KfCd1 0.202 320 8.99 - K19 S58900 448600 fCd1 0.203 300 9.00 - K20 S60060 447510 1Cd1 0.230 300 - - K22×15 S60860 447610 wCd2 0.307 245 9.02 - K22×16 S59050 4444070 wCd2 0.307 245 9.02 - K23 S58910 444670 wCd2 0.307 245 9.02 - K24 S59005 444670 wCd2 0.307 245 9.02 - K25 S59004 4466760 1Cd1 0.213 315 9.00 - K26 S58904 44620 1Cd1 0.214 335 9.00 - K31 S59840 44620 1Cd1 0.224 305 8.99 - K33 S60500 4	K14	560720	450900	fCd1	0.260	275	8.99	-
K18 558840 448187 k1Cd1 0.202 320 8.99 - K19 558900 448000 fCd1 0.196 335 8.99 - K20 560065 448212 fCd1 0.235 300 9.00 - K22A15 560860 447510 fCd1 0.229 300 9.01 - K22A15 560865 444490 wCd2 0.322 235 8.99 - K23 558510 444690 wCd2 0.300 - - K24 559000 444300 fCd1 0.228 300 - - K26 559000 446760 fCd1 0.217 315 9.00 - K27 558590 446415 fCd1 0.209 320 9.00 - K30 559670 44620 fCd1 0.224 305 8.99 - K33 560500 44710 fCd1 0.22	K17	559480	446250	fCd1	0.228	305	8.99	-
K19 558900 448600 ICd1 0.196 335 8.99 - K20 560065 448212 ICd1 0.235 300 9.00 - K21 559955 447685 ICd1 0.230 300 9.01 - K22A15 560860 444570 wCd2 0.322 235 8.99 - K22 558510 444470 wCd2 0.307 245 9.02 - K24 559005 4444500 wCd2 0.307 245 9.02 - K25 559004 446965 ICd1 0.209 320 8.99 - K26 559040 446965 ICd1 0.213 315 9.01 - K28 558904 446960 ICd1 0.244 305 8.99 - K30 559870 446820 ICd1 0.226 285 8.99 - K31 559840 447280	K18	558640	448187	kfCd1	0.202	320	8.99	-
K20 560065 448212 ICd1 0.235 300 9.00 - K21 559955 447685 ICd1 0.230 300 - - K22A15 560860 447510 ICd1 0.229 300 9.01 - K22A50 558055 444400 wCd2 0.307 245 9.02 - K24 559005 444500 ICd1 0.286 260 8.99 - K25 559000 444500 ICd1 0.217 315 9.00 - K26 559040 446965 ICd1 0.213 315 9.01 - K27 558500 446700 ICd1 0.224 305 8.99 - K28 558805 446700 ICd1 0.224 305 8.99 - K30 559670 44620 ICd1 0.220 320 9.00 - K33 560130 447280 IC	K19	558900	448600	fCd1	0,196	335	8,99	-
K21 S5995 H47685 ICA1 0.230 300 - - K22A15 560860 447510 ICA1 0.229 300 9.01 - K22A15 560860 4447510 ICA1 0.229 300 9.01 - K23 558510 444490 WCd2 0.307 245 9.02 - K24 559005 444300 ICd1 0.228 300 - - K25 559000 444300 ICd1 0.217 315 9.00 - K26 559040 44670 ICd1 0.217 315 9.00 - K28 558805 446415 ICd1 0.204 325 8.90 - K30 559670 446820 ICd1 0.206 325 9.01 - K33 560130 446800 WCd2 0.221 310 8.99 - K34 560640 446300 ICd1<	K20	560065	448212	tCd1	0.235	300	9,00	-
N.1 Discis Hors Discis Discis <thdiscis< th=""> <thdiscis< th=""></thdiscis<></thdiscis<>	K21	559955	447685	tCd1	0,230	300	-	-
Nat. 10 S5805 H44490 wCd2 0,322 235 8,99 - K23 55805 444600 wCd2 0,307 245 9,02 - K24 559005 444500 tCd1 0,226 280 8,99 - K25 559000 444500 tCd1 0,217 315 9,00 - K26 559104 446965 tCd1 0,213 315 9,00 - K27 558590 446760 tCd1 0,214 305 8,99 - K28 558940 446315 tCd1 0,209 320 9,00 - K33 56013 446800 wCd2 0,250 285 8,99 - K34 560640 447535 wCd2 0,221 310 8,99 - K35 560500 44710 tCd1 0,224 305 9,00 - K37 560270 446210 tCd1	K22A15	560860	447510	tCd1	0.229	300	9.01	-
Kaza Sosse Hints Nick Dial Dial Dial Dial K24 558010 444500 ICd1 0,286 260 8,99 - K25 559000 444300 ICd1 0,228 300 - - K26 559040 446965 ICd1 0,217 315 9,00 - K27 558590 446760 ICd1 0,213 315 9,00 - K28 55805 446415 ICd1 0,224 305 8,99 - K30 559670 446620 ICd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,220 285 8,99 - K34 560640 447555 wCd2 0,221 310 8,99 - K35 560500 447410 ICd1 0,227 305 - - K36 560480 446250 ICd1	K22-50A	558055	444490	wCd2	0.322	235	8 99	_
K24 559010 444500 fCd1 0,286 2.60 8,99 - K25 559000 444300 fCd1 0,286 2.60 8,99 - K26 559000 4446906 fCd1 0,217 315 9,00 - K27 558590 446700 fCd1 0,114 335 9,00 - K28 558910 446620 fCd1 0,294 305 8,99 - K30 559670 446620 fCd1 0,206 325 9,01 - K33 560130 448890 wCd2 0,221 310 8,99 - K34 560640 447535 wCd2 0,221 310 8,99 - K35 560500 447410 fCd1 0,227 305 8,99 - K36 560480 446300 fCd1 0,221 310 8,95 - K37 560270 446210 f	K23	558510	444670	wCd2	0 307	245	9.02	_
K25 55900 444300 ICd1 0,228 300 - - K26 559040 446965 ICd1 0,209 320 8,99 - K27 558850 446760 ICd1 0,217 315 9,00 - K28 559135 446300 ICd1 0,213 315 9,00 - K30 559670 446620 ICd1 0,224 305 8,99 - K31 559840 446315 ICd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,250 285 8,99 - K34 560460 447535 wCd2 0,221 310 8,99 - K35 560500 447410 ICd1 0,227 305 8,99 - K36 560480 446250 ICd1 0,221 310 8,95 - K37 560270 446210 ICd1 <th>K24</th> <th>559005</th> <th>444500</th> <th>tCd1</th> <th>0.286</th> <th>240</th> <th>8 99</th> <th>_</th>	K24	559005	444500	tCd1	0.286	240	8 99	_
K26 559040 446965 f.Cd1 0.209 320 8,99 - K27 558590 446760 f.Cd1 0,217 315 9,00 - K28 558805 446415 f.Cd1 0,213 315 9,01 - K29 559135 446300 f.Cd1 0,224 305 8,99 - K30 559670 446620 f.Cd1 0,206 325 9,01 - K31 559840 446315 f.Cd1 0,206 325 9,01 - K33 560130 446890 w.Cd2 0,221 310 8,99 - K34 560640 447355 w.Cd2 0,221 310 8,99 - K36 560400 446300 f.Cd1 0,224 305 9,00 - K37 560270 446210 f.Cd1 0,215 315 8,95 - K42-1 559480 446250	K25	559000	444300	tCd1	0,200	300	-	_
K27 58859 446760 1Cd1 0.217 315 9,00 - K28 558805 446415 1Cd1 0.213 315 9,01 - K29 559135 446300 fCd1 0,194 335 9,00 - K30 559670 446620 1Cd1 0,209 320 9,00 - K31 559840 446315 1Cd1 0,206 325 9,01 - K32 559940 447280 1Cd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,250 285 8,99 - K34 560640 447535 wCd2 0,221 310 8,99 - K35 560500 446210 1Cd1 0,223 305 8,99 - K36 560480 446250 fCd1 0,213 310 8,95 - K47 560270 446250 fCd1<	K26	559040	446965	tCd1	0,220	320	8 99	_
K28 S55805 446415 CC11 0,213 315 9,00 - K29 559135 446300 fCd1 0,194 335 9,00 - K30 559670 446620 tCd1 0,224 305 8,99 - K31 559840 446315 tCd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,220 285 8,99 - K34 560604 447535 wCd2 0,221 310 8,99 - K35 560500 44710 tCd1 0,227 305 8,99 - K36 560480 446300 tCd1 0,224 305 9,00 - K37 560270 446210 tCd1 0,224 305 9,00 - K41a+b 559480 446250 fCd1 0,227 305 - - K41a+b 559480 446250 fC	K27	558590	446760	tCd1	0,200	315	9,00	_
K29 559135 446300 fCd1 0,194 335 9,00 - K30 559670 446620 tCd1 0,224 305 8,99 - K31 559840 446315 tCd1 0,206 325 9,01 - K32 559940 447280 tCd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,250 285 8,99 - K34 560640 447355 wCd2 0,221 310 8,99 - K35 560500 447410 tCd1 0,227 305 8,99 - K36 560480 446300 tCd1 0,233 300 8,95 - K37 560270 446210 tCd1 0,217 305 - - K42+1 559480 446250 fCd1 0,215 315 8,95 - K42+2 559480 446250 fCd	K28	558805	446415	tCd1	0.213	315	9,00	_
K30 K30 K400 K41 0,00 C K31 559840 446315 tCd1 0,209 320 9,00 - K32 559940 447280 tCd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,221 310 8,99 - K34 560640 44710 tCd1 0,227 305 8,99 - K35 560500 446210 tCd1 0,214 305 9,00 - K39 558520 446250 fCd1 0,213 300 8,95 - K42-1 559480 446250 fCd1 0,214 315 8,95 - K42-2 559480 446250 fCd1 0,214	K29	559135	446300	fCd1	0,210	335	9,01	_
No.HouseHouseHouseHouseHouseHouseHouseK31559840446315tCd10,2063259,01-K32559940447280tCd10,2063259,01-K33560130446890wCd20,2502858,99-K34560640447535wCd20,2213108,99-K35560500447410tCd10,2273058,99-K36560480446300tCd10,2243059,00-K37560270446210tCd10,2213059,00-K39558520445415cug50,2812609,01-K41a+b559480446250fCd10,227305K42-1559480446250fCd10,2153158,95-K42-2559480446250fCd10,2143158,95-K43559480446250fCd10,2143158,95-K446559480446250fCd10,2143158,95-K45559480446250fCd10,2363008,98-K45559470447100tCd10,2363008,98-K51559470447100tCd10,2143159,00-K52559510446860tCd10,2143159,00- <th>K30</th> <th>559670</th> <th>446620</th> <th>tCd1</th> <th>0,104</th> <th>305</th> <th>8 99</th> <th>_</th>	K30	559670	446620	tCd1	0,104	305	8 99	_
K32 55940 447280 tCd1 0,206 325 9,01 - K33 560130 446890 wCd2 0,250 285 8,99 - K34 560640 447535 wCd2 0,221 310 8,99 - K35 560500 447410 tCd1 0,227 305 8,99 - K36 560480 446300 tCd1 0,224 305 9,00 - K37 560270 446210 tCd1 0,227 305 - - K41a+b 559480 446250 fCd1 0,227 305 - - K42-1 559480 446250 fCd1 0,221 310 8,95 - K42-2 559480 446250 fCd1 0,214 315 8,95 - K446 559480 446250 fCd1 0,214 315 8,98 - K47 560255 446210 tCd	K31	559840	446315	tCd1	0,224	320	9,00	_
KA3 560130 446890 WCd2 0,250 285 8,99 - K34 560640 447535 WCd2 0,221 310 8,99 - K35 560500 447410 tCd1 0,227 305 8,99 - K36 560480 446300 tCd1 0,221 310 8,99 - K37 560270 446210 tCd1 0,224 305 9,00 - K39 558520 445415 cug5 0,281 260 9,01 - K41a+b 559480 446250 fCd1 0,227 305 - - K42-1 559480 446250 fCd1 0,215 315 8,95 - K42-1 559480 446250 fCd1 0,214 315 8,95 - K445 559480 446250 fCd1 0,214 315 8,95 - K46 559480 446250 <td< th=""><th>K32</th><th>559940</th><th>447280</th><th>tCd1</th><th>0,200</th><th>325</th><th>9,00</th><th>_</th></td<>	K32	559940	447280	tCd1	0,200	325	9,00	_
K34560100H4050H0020,2012000,00K35560640447535wCd20,2213108,99-K36560480446300tCd10,2273058,99-K37560270446210tCd10,2243059,00-K39558520445415cug50,2812609,01-K41a+b559480446250fCd10,227305K42-1559480446250fCd10,227305K42-2559480446250fCd10,2153158,95-K43559480446250fCd10,2213108,95-K45a+b559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,2143158,98-K47560255446210tCd10,2333008,99-K50559470447100tCd10,2333008,99-K51559420446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K5455907044780tCd10,3242309,01-K54559560446180fCd10,2133158,99-K56 </th <th>K33</th> <th>560130</th> <th>446890</th> <th>wCd2</th> <th>0,200</th> <th>285</th> <th>8 99</th> <th>_</th>	K33	560130	446890	wCd2	0,200	285	8 99	_
K35 56050 447410 tCd1 0,227 305 8,99 K36 560500 447410 tCd1 0,227 305 8,99 - K37 560270 446210 tCd1 0,224 305 9,00 - K39 558520 445415 cug5 0,281 260 9,01 - K41a+b 559480 446250 fCd1 0,223 300 8,95 - K42-1 559480 446250 fCd1 0,227 305 - - K42-2 559480 446250 fCd1 0,221 310 8,95 - K43 559480 446250 fCd1 0,214 315 8,95 - K44 559480 446250 fCd1 0,214 315 8,95 - K46 559480 446250 fCd1 0,214 315 8,98 - K47 560255 446210 tCd1 <t< th=""><th>K34</th><th>560640</th><th>447535</th><th>wCd2</th><th>0.221</th><th>310</th><th>8,99</th><th>_</th></t<>	K34	560640	447535	wCd2	0.221	310	8,99	_
K36 560000 H1110 Kdf 6,21 600 6,00 K37 560270 446210 tCd1 0,224 305 9,00 - K39 558520 445415 cug5 0,281 260 9,01 - K41a+b 559480 446250 fCd1 0,227 305 - - K42-1 559480 446250 fCd1 0,227 305 - - K42-1 559480 446250 fCd1 0,227 305 - - K43 559480 446250 fCd1 0,221 315 8,95 - K43 559480 446250 fCd1 0,221 310 8,95 - K46 559480 446250 fCd1 0,214 315 8,95 - K46 559480 446250 fCd1 0,233 300 8,95 - K47 560255 446210 tCd1 0,214 315 8,98 - K50 559305 447255 tCd1<	K35	560500	447410	tCd1	0 227	305	8,99	_
K37 560270 446210 tCd1 0,224 305 9,00 - K39 558520 445215 cug5 0,281 260 9,01 - K41a+b 559480 446250 fCd1 0,227 305 - - K42-1 559480 446250 fCd1 0,215 315 8,95 - K42-1 559480 446250 fCd1 0,215 315 8,95 - K42-2 559480 446250 fCd1 0,221 310 8,95 - K43 559480 446250 fCd1 0,214 315 8,95 - K46 559480 446250 fCd1 0,214 315 8,95 - K47 560255 446210 tCd1 0,233 300 8,99 - K50 559470 447100 tCd1 0,233 300 8,99 - K51 559510 446860 <t< th=""><th>K36</th><th>560480</th><th>446300</th><th>tCd1</th><th>0.250</th><th>285</th><th>-</th><th>_</th></t<>	K36	560480	446300	tCd1	0.250	285	-	_
K43558520445415cug50,2812609,01K41a+b559480446250fCd10,2333008,95-K42-1559480446250fCd10,2153158,95-K42-2559480446250fCd10,2153158,95-K43559480446250fCd10,2213108,95-K443559480446250fCd10,2143158,95-K45a+b559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2333008,99-K50559470447100tCd10,2333008,99-K5155942046665tCd10,2333008,99-K52559510446860tCd10,2333008,99-K5355855446545wCd20,2033259,01-K5455907044780tCd10,2133158,99-K56559170445970fCd10,2133158,99-K5655960446180fCd10,3002258,99- <th< th=""><th>K37</th><th>560270</th><th>446210</th><th>tCd1</th><th>0.224</th><th>305</th><th>9.00</th><th>-</th></th<>	K37	560270	446210	tCd1	0.224	305	9.00	-
K41a+b559480446250fCd10,2333008,95-K42-1559480446250fCd10,217305K42-2559480446250fCd10,2153158,95-K43559480446250fCd10,2213108,95-K45a+b559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2333008,99-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2143159,00-K52559510446860tCd10,2333008,99-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,3022258,99-K58-1560375445525fCd10,3162358,99-K58-256030445665fCd10,327230 <th>K39</th> <th>558520</th> <th>445415</th> <th>cua5</th> <th>0.281</th> <th>260</th> <th>9.01</th> <th>-</th>	K39	558520	445415	cua5	0.281	260	9.01	-
K42-1559480446250fCd10,227305K42-2559480446250fCd10,2153158,95-K43559480446250fCd10,2213108,95-K45a+b559480446250fCd10,2642758,95-K46559480446250fCd10,2143158,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,2363008,98-K49559305447255tCd10,2333008,99-K50559470447100tCd10,2303008,99-K51559420446965tCd10,2143159,00-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K58-1560375445525tCd10,3162358,99-K58-256030445665tCd10,327230K58-2560376446480tCd10,2952508,99- <th>K41a+b</th> <th>559480</th> <th>446250</th> <th>fCd1</th> <th>0.233</th> <th>300</th> <th>8.95</th> <th>-</th>	K41a+b	559480	446250	fCd1	0.233	300	8.95	-
K42-2559480446250fCd10,2153158,95-K43559480446250fCd10,2213108,95-K45a+b559480446250fCd10,2642758,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2143159,00-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K5455907044780tCd10,2133158,99-K55559170446970fCd10,2053258,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-25603044665tCd10,327230K59560376446480tCd10,2952508,99-	K42-1	559480	446250	fCd1	0.227	305	-	_
K43559480446250fCd10,2213108,95-K45a+b559480446250fCd10,2642758,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2143159,00-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2053258,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K42-2	559480	446250	fCd1	0.215	315	8.95	-
K45a+b559480446250fCd10,2642758,95-K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3162358,99-K58-1560375445525tCd10,327230K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K43	559480	446250	fCd1	0,221	310	8,95	-
K46559480446250fCd10,2143158,95-K47560255446210tCd10,3172358,98-K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K53558555446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-156037544565tCd10,327230K58-256030446480tCd10,2952508,99-	K45a+b	559480	446250	fCd1	0,264	275	8,95	-
K47560255446210tCd10,3172358,98-K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,2952508,99-K59560376446480tCd10,2952508,99-	K46	559480	446250	fCd1	0,214	315	8,95	-
K49559305447255tCd10,2363008,98-K50559470447100tCd10,2333008,99-K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K5355855446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,327230K58-2560330446480tCd10,2952508,99-	K47	560255	446210	tCd1	0,317	235	8,98	-
K50559470447100tCd10,2333008,99-K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K53558555446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445355tCd10,3302258,99-K58-1560375445525tCd10,327230K59560376446480tCd10,2952508,99-	K49	559305	447255	tCd1	0,236	300	8,98	-
K51559420446965tCd10,2303008,99-K52559510446860tCd10,2143159,00-K53558555446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445355tCd10,3302258,99-K58-1560375445625tCd10,327230K59560376446480tCd10,2952508,99-	K50	559470	447100	tCd1	0,233	300	8,99	-
K52559510446860tCd10,2143159,00-K53558555446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,2952508,99-	K51	559420	446965	tCd1	0,230	300	8,99	-
K53558555446545wCd20,2033259,01-K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,2952508,99-	K52	559510	446860	tCd1	0,214	315	9,00	-
K54559070447480tCd10,3242309,01-K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K53	558555	446545	wCd2	0,203	325	9,01	-
K55559170445970fCd10,2133158,99-K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K54	559070	447480	tCd1	0,324	230	9,01	-
K56559560446180fCd10,2053258,99-K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K55	559170	445970	fCd1	0,213	315	8,99	-
K57560110445535tCd10,3302258,99-K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K56	559560	446180	fCd1	0,205	325	8,99	-
K58-1560375445525tCd10,3162358,99-K58-2560330445665tCd10,327230K59560376446480tCd10,2952508,99-	K57	560110	445535	tCd1	0,330	225	8,99	-
K58-2 560330 445665 tCd1 0,327 230 - - K59 560376 446480 tCd1 0,295 250 8,99 -	K58-1	560375	445525	tCd1	0,316	235	8,99	-
K59 560376 446480 tCd1 0,295 250 8,99 -	K58-2	560330	445665	tCd1	0,327	230	-	-
	K59	560376	446480	tCd1	0,295	250	8,99	-

Probe-Nr.	Hochwert	Rechtswert	Stratigraphie	Δ°2Θ	(°C)	6d(33-1,060)	Rm %
K60	560010	446400	tCd1	0,294	250	8,99	-
K61	558970	448670	fCd1	0,341	220	8,99	-
K62-1	559205	448930	fCd1	0,390	190	8,98	-
K62-2	559205	448930	fCd1	0,346	220	-	-
K63	559202	449930	tCd1	0,335	225	8,99	-
K64	559900	449775	tCd1	0,383	195	8,99	-
K65	669700	450500	tCd1	0,321	235	-	-
K66	560704	446060	tCd1	0,249	285	8,99	-
K67	560800	446060	tCd1	0,255	280	8,99	-
K68	560475	446080	tCd1	0,213	315	9,00	-
K69	560460	446220	tCd1	0,229	300	9,00	-
K70	560470	445680	tCd1	0,233	300	8,99	-
K71	560170	445750	tCd1	0,244	290	8,99	-
K72	560010	445670	tCd1	0,274	265	8,99	-
K73	560885	446660	tCd1	0,250	285	8,97	-
K74	560730	446645	tCd1	0,207	325	8,99	-
K75	560775	446770	tCd1	0,227	305	8,93	-
K76	560755	446900	tCd1	0,228	300	8,95	-
K77	560550	447110	wCd2	0,228	300	9,00	-
K78-1	560650	446600	tCd1	0,213	315	9,00	-
K78-2	560650	446600	tCd1	0,215	315	9,00	-
K79	560735	446520	tCd1	0,204	325	8,94	-
K80	560770	446410	wCd2	0,224	305	8,97	-
K81	560910	446425	tCd1	0,213	315	8,97	-
K82	560900	446035	tCd1	0,206	325	8,97	-
K83	560965	446810	tCd1	0,209	320	8,94	-
K84	560940	447160	wCd2	0,241	290	8,99	-
K85	560990	447180	tCd1	0,223	310	8,99	-
K86	560970	447220	tCd1	0,226	305	8,99	-
K87	561210	447810	wCd2	0,238	295	8,99	-
K88	561340	448010	tCd1	0,248	285	9,00	-
K89	560990	448270	tCd1	0,254	280	9,03	-
K90	560830	448070	tCd1	0,274	265	8,97	-
K91	560830	447565	wCd2	0,246	290	8,97	-
K92	562560	450415	tCd1	0,224	305	9,00	-
K93	562485	450315	wCd2	0,255	280	9,00	-
K94	562410	449830	wCd2	0,236	300	9,00	-
K95	561365	449480	tCd1	0,243	290	8,99	-
K96	561045	449430	tCd1	0,326	230	8,99	-
K97	560895	448530	tCd1	0,304	245	9,01	-
K98	561410	448080	tCd1	0,228	300	9,00	-
K99	561200	448040	wCd2	0,309	240	9,00	-
K100	561240	447910	wCd2	0,246	290	8,99	-
K101	561540	448735	wCd2	0,243	290	9,00	-
K102	561750	449815	tCd1	0,299	245	8,99	-
K103	561375	451395	tCd1	0,190	335	8,99	-
K104	561480	451860	tCd1	0,237	300	8,99	-
K105	560980	451240	tCd1	0,263	275	8,99	-
K106	560775	451120	tCd1	0,199	325	8,99	-
K108	560990	450880	tCd1	0,304	245	8,99	-
К109	560600	450980	tCd1	0,236	300	-	-

Probe-Nr.	Hochwert	Rechtswert	Stratigraphie	∆°2Θ	(°C)	6d(33-1,060)	Rm %
K110	560600	450780	tCd1	0.287	260	-	
K111	559920	450200	tCd1	0.232	300	9.00	-
K112	559770	449610	tCd1	0.309	240	8.99	-
K117	559950	446310	tCd1	0.232	300	8.99	-
K118	559970	445920	tCd1	0.233	300	8.99	-
FR 039	558460	448210	cu1d	0.270	270	-,	-
FR 040	558460	448210	cu1d	0.287	260	8.99	4.0
FR 041	558470	448170	cu1dt	0.253	280	8.93	4.2
FR 042	558245	448040	cu1d	0.274	265	8.99	4.1
FR 043	557990	447790	cu1d	0.283	260	8,98	5,0
FR 044	557880	447685	cu3	0,347	215	9,00	-
FR 045	557950	447920	cu3	0,252	285	-	4,9
FR 046	557805	447930	cu4	0.235	300	9,01	4,4
FR 047	557710	447865	cu4	0,214	315	8,99	5,3
FR 101	557745	447515	tot	0,349	215	9,04	3,7
FR 102	557725	447285	cutb	0,244	290	-	5,2
FR 103	557600	447280	cu3g	0,328	225	9,01	4,7
FR 104	557363	447100	cuWq	0,410	180	8,98	4,8
FR 105	557255	446860	cu2tb	0,354	210	8,99	5,4
FR 106	557345	446668	cutb3	0,434	170	8,98	5,2
FR 107	557665	446605	cu2tg	0,379	195	8,99	4,2
FR 108	557690	446430	cucw	0,346	215	9,01	5,4
FR 109	558005	446525	cu	0,292	255	9,01	5,5
FR 110	558025	446825	cu3tb	0,258	280	9,02	5,0
FR 111	558200	446575	cu2tb	0,237	295	9,02	7,3
FR 112	558400	446400	cutb3	0,235	295	9,01	6,2
FR 113	558550	446220	cutb3	0,257	280	9,00	5,2
FR 114	558475	445995	cutb3	0,237	295	9,00	5,6
FR 115	558435	445775	cutg4	0,286	255	9,00	5,4
FR 116	558763	445933	cutg4	0,228	305	9,01	5,4
FR 117	559370	445705	cug5	0,192	335	9,01	5,7
FR 118	559175	445570	cut5	0,213	315	8,99	6,9
FR 119	559070	445560	cut5	0,234	300	9,00	-
FR 120	558795	445450	cug5	0,276	265	9,02	4,7
FR 122	558370	445355	cut5	0,386	195	9,01	2,9
FR 123	558375	445685	cutg5	0,281	260	9,02	3,4
FR 124	558090	445405	cug5	0,410	180	9,01	2,8
FR 125	557685	445395	cuwq	0,344	220	9,01	2,4
FR 126	557460	445430	cug4	0,349	215	9,01	2,9
FR 127	558085	445780	cutb3	0,341	220	9,00	4,3
FR 128	557635	445575	cug4	0,392	190	9,02	2,8
FR 129	556980	446600	cutb2	0,318	235	8,99	5,1
FR 129a	556980	446600	cutb2	0,307	240	-	5,2
FR 130	557000	446330	cuwqt	0,455	160	8,99	4,7
FR 131	556975	445995	cutb3	0,309	240	8,99	5,1
FR 132-1	557160	446140	cutb3	0,311	240	-	4,7
FR132-2	557160	446140	cutb3	0,303	245	8,99	-
FR 133	557420	446340	cutg2	0,473	150	8,99	-
FR 134	557485	446075	cuwq	0,346	215	9,02	4,5
FR 135	557760	446175	cugw	0,311	240	9,02	5,5
FR 136	558020	446255	cuwg	0,272	270	9,00	5,0

Proba-Nr	Hochwort	Pochtswort	Stratigraphio	٨020	(°C)	64(32-1.060)	Pm %
	FE0000	440005	Stratigraphie	0.014	005	00(33-1,000)	5.0
FR 137	558263	446035	CUID3	0,314	235	9,01	5,8
FR 138	557930	446010	CUID3	0,302	245	9,00	5,2
FR 139	557770	445820	cuwq	0,306	245	8,99	3,1
FR 141	557540	445695	cutb3	0,367	205	9,00	-
FR 142	557240	445475	cutb2	0,301	245	9,00	5,5
FR 144	557345	445800	cutb3	0,319	235	9,01	5,1
FR 145	557160	445905	cutb3	0,297	250	9,01	5,1
FR 146	557550	446765	cu3tb	0,290	255	8,99	5,1
FR 147	557225	446495	cutb3	0,420	175	8,98	4,6
FR 158	558320	448970	og1	0,283	260	8,98	-
FR 159	558501	448375	cu	0,226	305	8,99	9,1
FR 160	558561	448353	cu	0,229	300	8,99	7,0
FR 161	558537	448293	CT1	0,395	190	9,00	-
FR 162	557950	448220	cu4	0,267	270	9,01	5,3
FR 163	557790	447875	cu4	0,268	270	9,00	3,6
FR 176	556875	446490	CUWq	0,321	235	8,99	3,7
FR 177	558495	444810	cug5	0,346	215	9,01	3,1
FR 178	558660	444870	cutg5	0,356	210	9,01	-
FR 179	558833	444810	cutg4	0,319	235	9,01	-
FR 180	559010	444780	cutb3	0,279	260	9,00	5,6
FR 181	559345	444735	cutg2	0,252	285	8,99	6,6
FR 182	559285	445050	cuWqg	0,293	250	8,99	-
FR 183	559150	445125	cug5	0,277	265	8,99	5,2
FR 184	558795	445120	cug5	0,367	205	9,02	4,1
FR 185	558520	445125	cutg5	0,374	200	9,01	3,7
FR 189	558760	446220	cuwqg	0,288	255	8,99	5,7
FR 190	559260	445850	cutg5	0,365	205	9,00	5,1
FR 191	559157	445880	cutg4	0,289	255	9,00	4,8
FR 192a	559265	445355	cutg5	0,280	260	8,99	5,3
FR 192b	559265	445355	cutg5	0,436	170	-	-
FR 193	558345	445175	cug5	0,449	165	9,01	3,3
FR 194	558200	445145	-	0,439	165	-	-
FR 195	557915	445025	-	0,516	135	9,01	3,3
FR 196	557660	445075	cutg5	0,368	205	9,01	2,8
FR 197	557485	445175	cutb3	0,433	170	8,99	2,8

		Illit/Chlorit	10 Å-	Illit	(FWHM)	7 Å-	Chlorit	(FWHM)
Probe-Nr.	Auf-	Verhältnis	CIS	Frey	Meßwert	CIS	Frey	Meßwert
	bereitung	(Illit %)	Δ°2Θ	Δ°2Θ	Δ°2Θ	Δ°2Θ	Δ°2Θ	∆°2⊖
K2	US	65	0.480	0.380	0.380	0.295	0.294	0.294
K2	H2O2	68	0.431	0.353	0.383	0.272	0.267	0.298
K3	NADA	69	0.320	0.291	0.291	0.262	0.255	0.255
K3	US	69	0.329	0.296	0.296	0.241	0.230	0.230
K3	H2O2	74	0.330	0.297	0.321	0.238	0.226	0.247
K5	NADA	73	0.217	0.234	0.234	0.225	0.210	0.210
K5	US	72	0.229	0.241	0.241	0.231	0.217	0.217
K5	H2O2	76	0.267	0.262	0.282	0.244	0.233	0.256
K6	NADA	72	0.262	0.259	0.259	0.262	0.255	0.255
K6	US	77	0.264	0.260	0.260	0.231	0.217	0.217
K6	H2O2	80	0.243	0.248	0.267	0.225	0.210	0.228
K7	NADA	61	0.291	0.275	0.275	0.269	0.263	0.263
K7	US	66	0 137	0 190	0 190	0.203	0 184	0 184
K7	H2O2	70	0 145	0 194	0 207	0.206	0 188	0.200
K8	NADA	67	0.136	0 189	0.189	0.200	0 194	0 194
K8	US	69	0.152	0.198	0 198	0.217	0.201	0.201
K8	H2O2	67	0.139	0 191	0.203	0.216	0.200	0.215
KQ	US	60 60	0.181	0.214	0.214	0.263	0.256	0.256
K9	H2O2	58	0.101	0.214	0.214	0.203	0.256	0.230
K11	H2O2	59	0.100	0.200	0.210	0.200	0.200	0.200
K14	ΝΔΠΔ	49	0.247	0.260	0.270	0.207	0.220	0.240
K14		45	0.264	0.200	0.200	0.210	0.102	0.192
K14	H2O2	-1/ 61	0.204	0.200	0.200	0.214	0.107	0.107
K17	ΝΔΠΔ	53	0.200	0.272	0.230	0.211	0.104	0.207
K17		60 60	0.200	0.200	0.230	0.222	0.207	0.207
K17		59	0.133	0.224	0.224	0.200	0.101	0.206
K17		56	0.213	0.200	0.233	0.221	0.200	0.200
K17		59	0.100	0.210	0.210	0.200	0.107	0.107
K17		58	0.101	0.214	0.214	0.100	0.170	0.173
K17	US	54	0.265	0.261	0.261	0.251	0.242	0.762
K17	USI	65	0.206	0.228	0.201	0.201	0.196	0.196
K17		63	0.200	0.220	0.220	0.217	0.100	0.100
K17		63	0.276	0.202	0.202	0.217	0.201	0.201
K17		60 60	0.220	0.200	0.200	0.224	0.200	0.200
K17	USIV	66	0.208	0.229	0.229	0.210	0.193	0.193
K17	US iv	58	0.206	0.228	0.228	0.218	0.202	0.202
K17		65	0.200	0.220	0.220	0.210	0.202	0.202
K17	US v	61	0.217	0.234	0.234	0.217	0.201	0.201
K17		65	0.273	0.265	0.265	0.244	0.233	0.233
K17	H2O2	61	0.184	0.216	0.231	0.209	0.191	0.204
K18	US	82	0.155	0.200	0.200	0.620	0.684	0.684
K18	H2O2	84	0.160	0.202	0.216	0.642	0.710	0.852
K19	US	69	0.148	0.196	0.196	0.205	0.186	0.186
K19	H2O2	69	0.260	0.258	0.278	0.260	0.253	0.281
K20	NADA	63	0.219	0.235	0.235	0.217	0.201	0.201
K20	US	63	0.219	0.235	0.235	0.212	0.195	0.195
K20	H2O2	71	0.257	0.256	0.276	0.222	0.207	0.224
K21	NADA	45	0.193	0.221	0.221	0.216	0.199	0.199
K21	US	51	0.209	0.230	0.230	0.223	0.208	0.208
K21	H2O2	50	0.200	0.225	0.241	0.214	0.197	0.211
K22A15	US	74	0.208	0.229	0.229	0.265	0.258	0.258
K22A15	H2O2	76	0.406	0.339	0.339	0.335	0.342	0.342
K22-50A	US	73	0.375	0.322	0.322	0.214	0.197	0.197
K22-50A	H2O2	79	0.476	0.378	0.411	0.283	0.280	0.315
K23	US	63	0.348	0.307	0.307	0.259	0.251	0.251
K23	H2O2	59	0.423	0.348	0.378	0.288	0.286	0.322
K24	H2O2	76	0.311	0.286	0.309	0.226	0.212	0.230
K25	H2O2	85	0.205	0.228	0.244	0.215	0.198	0.213
K26	NADA	65	0.173	0.210	0.210	0.213	0.196	0.196

		Illit/Chlorit	10 Å-	lllit _	(FWHM)	7 Å-	Chlorit	(FWHM)
Probe-Nr.	Auf-	Verhältnis	CIS	Frey	Meßwert	CIS	Frey	Meßwert
	bereitung	(IIIIt %)	Δ-2Θ	Δ-20	Δ-20	Δ-20	Δ-2Θ	Δ-20
K26	US	69	0 172	0 209	0 209	0 213	0 196	0 196
K26	H2O2	70	0.226	0.239	0.257	0.235	0.222	0.243
K27	NADA	63	0.181	0.214	0.214	0.217	0.201	0.201
K27	US	67	0.186	0.217	0.217	0.217	0.201	0.201
K27	H2O2	63	0.145	0.194	0.207	0.202	0.182	0.193
K28	NADA	83	0.161	0.203	0.203	0.231	0.218	0.218
K28	US	82	0.179	0.213	0.213	0.235	0.222	0.222
K28	H2O2	80	0.181	0.214	0.229	0.243	0.232	0.255
K29	NADA	78	0.136	0.189	0.189	0.202	0.183	0.183
K29	US	78	0.145	0.194	0.194	0.211	0.194	0.194
K29	H2O2	64	0.155	0.200	0.213	0.220	0.204	0.220
K30	US	58	0.199	0.224	0.224	0.220	0.204	0.204
K30	H2O2	72	0.277	0.267	0.288	0.258	0.250	0.277
K31	NADA	76	0.152	0.198	0.198	0.157	0.129	0.129
K31	US	71	0.172	0.209	0.209	0.215	0.198	0.198
K31	H2O2	75	0.163	0.204	0.218	0.213	0.196	0.210
K32	H2O2	69	0.166	0.206	0.220	0.214	0.198	0.212
K33	H2O2	73	0.246	0.250	0.250	0.229	0.215	0.215
K34	NADA	60	0.213	0.232	0.232	0.237	0.225	0.225
K34	US	60	0.193	0.221	0.221	0.228	0.214	0.214
K34	H2O2	63	0.199	0.224	0.240	0.223	0.208	0.225
K35	H2O2	70	0.204	0.227	0.243	0.219	0.203	0.219
K36	US	84	0.246	0.250	0.250	0.229	0.215	0.215
K37	NADA	73	0.186	0.217	0.217	0.216	0.199	0.199
K37	US	71	0.199	0.224	0.224	0.223	0.208	0.208
K37	H2O2	76	0.212	0.231	0.248	0.228	0.214	0.233
K39	NADA	68	0.301	0.281	0.281	0.215	0.198	0.198
K41a+b	NADA	67	0.215	0.233	0.233	0.215	0.198	0.198
K42-1	NADA	62	0.204	0.227	0.227	0.209	0.191	0.191
K42-2	NADA	63	0.182	0.215	0.215	0.206	0.187	0.187
K43	NADA	68	0.193	0.221	0.221	0.207	0.189	0.189
K45a+b	NADA	65	0.271	0.264	0.264	0.219	0.203	0.203
K46	NADA	60	0.181	0.214	0.214	0.200	0.180	0.180
K47	NADA	87	0.366	0.317	0.317	0.213	0.196	0.196
K49	NADA	61	0.220	0.236	0.236	0.219	0.203	0.203
K50	NADA	67	0.215	0.233	0.233	0.219	0.203	0.203
N31		03 70	0.209	0.230	0.230	0.220	0.212	0.212
NJ2 K52		70	0.161	0.214	0.214	0.211	0.195	0.193
K53		50	0.101	0.203	0.203	0.206	0.190	0.190
K55		60 60	0.379	0.324	0.324	0.320	0.331	0.331
K56		57	0.173	0.215	0.215	0.201	0.101	0.198
K57	US	67	0.104	0.200	0.200	0.213	0.130	0.130
K58-1	US	81	0.365	0.316	0.316	0.268	0.262	0.262
K58-2	US	70	0.384	0.327	0.327	0.265	0.258	0.258
K59	US	74	0.327	0.295	0.295	0.282	0.279	0.279
K60	US	74	0.325	0.294	0.294	0.278	0.274	0.274
K61	US	62	0.410	0.341	0.341	0.269	0.263	0.263
K62-1	US	66	0.498	0.390	0.390	0.284	0.281	0.281
K62-2	US	57	0.419	0.346	0.346	0.270	0.264	0.264
K63	US	73	0.399	0.335	0.335	0.320	0.324	0.324
K64	US	82	0.485	0.383	0.383	0.284	0.281	0.281
K65	US	83	0.374	0.321	0.321	0.303	0.304	0.304
K66	US	80	0.244	0.249	0.249	0.243	0.232	0.232
K67	US	74	0.255	0.255	0.255	0.246	0.236	0.236
K68	US	35	0.179	0.213	0.213	0.241	0.230	0.230
K69	US	80	0.208	0.229	0.229	0.223	0.208	0.208
K70	US	64	0.215	0.233	0.233	0.188	0.166	0.166
K71	US	73	0.235	0.244	0.244	0.208	0.190	0.190

		Illit/Chlorit	10 Å-	Illit	(FWHM)	7 Å-	Chlorit	(FWHM)
Probe-Nr.	Auf-	Verhältnis	CIS	Frey	Meßwert	CIS	Frey	Meßwert
	bereituna	(Illit %)	Δ°2Θ	Δ°2Θ	∆°2⊖	∆°2Θ	Δ°2Θ	∆°2⊖
	J							
K72	US	86	0.289	0.274	0.274	0.222	0.207	0.207
K73	US	92	0.246	0.250	0.250	0.246	0.235	0.235
K74	119	70	0.168	0.207	0.207	0.213	0.106	0.196
K75		85	0.100	0.207	0.207	0.210	0.130	0.130
K76	116	72	0.204	0.221	0.227	0.231	0.210	0.210
	03	73	0.200	0.220	0.220	0.233	0.222	0.222
N//	03	70	0.206	0.220	0.228	0.211	0.193	0.193
K/8-1	05	70	0.179	0.213	0.213	0.216	0.200	0.200
K78-2	US	83	0.182	0.215	0.215	0.214	0.197	0.197
K79	US	79	0.163	0.204	0.204	0.210	0.192	0.192
K80	US	88	0.199	0.224	0.224	0.231	0.217	0.217
K81	US	79	0.179	0.213	0.213	0.224	0.209	0.209
K82	US	79	0.166	0.206	0.206	0.210	0.192	0.192
K83	US	76	0.172	0.209	0.209	0.214	0.197	0.197
K84	US	70	0.229	0.241	0.241	0.229	0.215	0.215
K85	US	72	0.197	0.223	0.223	0.219	0.203	0.203
K86	US	66	0.202	0.226	0.226	0.214	0.197	0.197
K87	US	77	0.224	0.238	0.238	0.326	0.332	0.332
K88	US	69	0.242	0.248	0.248	0.260	0.252	0.252
K89	US	39	0.253	0.254	0.254	0.224	0.209	0.209
K90	US	79	0.289	0.274	0.274	0.269	0.263	0.263
K91	US	79	0.238	0.246	0.246	0.245	0 234	0.234
K92	US	75	0.199	0.224	0.224	0.285	0.282	0.282
K03		68	0.155	0.224	0.224	0.200	0.202	0.202
K042	115	91	0.230	0.235	0.235	0.223	0.200	0.200
K94a K05	03	61	0.220	0.230	0.230	0.223	0.200	0.200
KOG	03	62	0.233	0.245	0.243	0.200	0.100	0.180
K90	03	03	0.363	0.320	0.320	0.274	0.209	0.209
K97	05	82	0.343	0.304	0.304	0.296	0.295	0.295
K98	05	73	0.206	0.228	0.228	0.234	0.221	0.221
K99	US	78	0.352	0.309	0.309	0.272	0.267	0.267
K100	US	64	0.238	0.246	0.246	0.231	0.218	0.218
K101	US	75	0.233	0.243	0.243	0.216	0.200	0.200
K102	US	87	0.334	0.299	0.299	0.219	0.203	0.203
K103	US	79	0.137	0.190	0.190	0.219	0.203	0.203
K104	US	72	0.222	0.237	0.237	0.210	0.192	0.192
K105	US	73	0.269	0.263	0.263	0.201	0.181	0.181
K106a	US	56	0.154	0.199	0.199	0.190	0.168	0.168
K106b	US	55	0.177	0.212	0.212	0.196	0.176	0.176
K108	US	77	0.343	0.304	0.304	0.215	0.198	0.198
K109	US	71	0.220	0.236	0.236	0.236	0.223	0.223
K110	US	69	0.312	0.287	0.287	0.201	0.182	0.182
K111	US	72	0.213	0.232	0.232	0.231	0.217	0.217
K112	US	88	0.352	0.309	0.309	0.214	0.197	0.197
K117	US	72	0.213	0.232	0.232	0.206	0.187	0.187
K118	US	80	0.215	0.233	0.233	0.210	0.192	0.192
FR 039	H2O2	71	0.282	0.270	0.291	0.240	0.229	0.251
FR 040	H2O2	69	0.312	0.287	0.310	0.267	0.261	0.291
FR 041	H2O2	61	0.251	0.253	0.272	0.223	0.208	0.225
FR 042	H2O2	81	0.288	0.274	0.295	0.238	0.226	0.248
FR 043	H2O2	84	0.304	0.283	0.305	0.265	0.259	0.288
FR 044	H2O2	99	0.421	0.347	0.377	-	-	-
FR 045	H2O2	62	0.249	0.252	0.271	0.228	0.214	0.233
FR 046	H2O2	72	0.218	0 235	0 252	0.246	0 236	0.260
FR 047	H2O2	61	0 181	0.214	0.202	0.244	0.233	0.256
FR 101	H2O2	90	0.424	0.2/0	0.223	-	0.200	-
ED 102	H202	80	0.724	0.349	0.313	0.262	-	0.263
		60	0.204	0.244	0.202	0.202	0.200	0.200
FR 103		09	0.300	0.328	0.300	0.390	0.408	0.475
		/δ	0.535	0.410	0.447	0.257	0.249	0.276
FK 105	H202	80	0.433	0.354	0.384	0.256	0.248	0.275
FK 106	H2O2	82	0.577	0.434	0.473	0.269	0.263	0.293

		Illit/Chlorit	10 Å-	Illit	(FWHM)	7 Å-	Chlorit	(FWHM)
Probe-Nr.	Aut-	Verhaltnis	CIS	Frey		CIS	Frey	Meßwert
	bereitung	(1111 76)	Δ 20	Δ 20	Δ 20	Δ 20	Δ 20	Δ 20
FR 107	H2O2	84	0.478	0.379	0.412	0.297	0.297	0.336
FR 108	H2O2	79	0.420	0.346	0.376	0.285	0.283	0.318
FR 109	H2O2	78	0.321	0.292	0.315	0.294	0.293	0.331
FR 110	H2O2	64	0.260	0.258	0.278	0.236	0.223	0.244
FR 111	H2O2	68	0.221	0.237	0.254	0.228	0.214	0.232
FR 112	H2O2	68	0.218	0.235	0.252	0.231	0.218	0.237
FR 113	H2O2	78	0.259	0.257	0.277	0.263	0.256	0.285
FR 114	H2O2	73	0.221	0.237	0.254	0.226	0.212	0.230
FR 115	H2O2	76	0.311	0.286	0.309	0.256	0.248	0.275
FR 116	H2O2	67	0.205	0.228	0.244	0.226	0.211	0.229
FR 117	H2O2	57	0.140	0.192	0.204	0.208	0.190	0.202
FR 118	H2O2	75	0.179	0.213	0.228	0.218	0.202	0.217
FR 119	H2O2	76	0.217	0.234	0.251	0.219	0.203	0.219
FR 120	H2O2	67	0.293	0.276	0.298	0.246	0.235	0.259
FR 122	H2O2	73	0.491	0.386	0.420	0.322	0.327	0.373
FR 123	H2O2	68	0.301	0.281	0.303	0.259	0.251	0.279
FR 124	H2O2	51	0.535	0.410	0.447	0.293	0.291	0.329
FR 125	H2O2	85	0.415	0.344	0.373	0.281	0.277	0.311
FR 126	H2O2	74	0.424	0.349	0.379	0.294	0.293	0.331
FR 127	H2O2	71	0.410	0.341	0.370	0.271	0.266	0.297
FR 128	H2O2	75	0.501	0.392	0.426	0.284	0.281	0.316
FR 129	H2O2	80	0.368	0.318	0.344	0.352	0.363	0.418
FR 129a	H2O2	80	0.348	0.307	0.332	0.327	0.332	0.380
FR 130	H2O2	75 77	0.615	0.455	0.496	0.307	0.308	0.350
FR 131	H2O2	77	0.351	0.309	0.334	0.265	0.258	0.287
FR 132-1	H2O2	98	0.356	0.311	0.337	0.302	0.303	0.343
FR132-2	H2O2	98	0.342	0.303	0.328	0.317	0.320	0.365
FR 133		70 60	0.649	0.473	0.317	0.275	0.270	0.302
FR 134	H2O2	84	0.420	0.340	0.370	0.321	0.320	0.372
FR 136	H2O2	82	0.330	0.272	0.007	0.301	0.301	0.347
FR 137	H2O2	71	0.361	0.314	0.340	0.282	0.202	0.313
FR 138	H2O2	62	0.340	0.302	0.327	0.269	0.263	0.293
FR 139	H2O2	87	0.347	0.306	0.331	0.251	0.242	0.267
FR 141	H2O2	81	0.457	0.367	0.399	0.262	0.255	0.284
FR 142	H2O2	80	0.337	0.301	0.325	0.258	0.250	0.277
FR 144	H2O2	80	0.369	0.319	0.345	0.265	0.258	0.287
FR 145	H2O2	86	0.330	0.297	0.321	0.282	0.279	0.313
FR 146	H2O2	87	0.317	0.290	0.313	0.349	0.359	0.413
FR 147	H2O2	82	0.553	0.420	0.458	0.248	0.238	0.262
FR 158	H2O2	71	0.306	0.283	0.306	0.232	0.218	0.238
FR 159	H2O2	55	0.202	0.226	0.242	0.239	0.227	0.249
FR 160	H2O2	73	0.207	0.229	0.245	0.309	0.311	0.353
FR 161	H2O2	64	0.507	0.395	0.430	0.279	0.275	0.309
FR 162	H2O2	82	0.277	0.267	0.288	0.343	0.352	0.405
FR 163	H2O2	66	0.278	0.268	0.289	0.275	0.271	0.303
FR 176	H2O2	72	0.374	0.321	0.348	0.267	0.260	0.290
FR 177	H2O2	73	0.418	0.346	0.375	0.307	0.309	0.351
FR 170	H2O2	11	0.436	0.330	0.360	0.299	0.299	0.336
FR 179		00 77	0.369	0.319	0.345	0.299	0.299	0.336
FR 100	H202	11 85	0.290	0.219	0.301	0.239	0.201	0.219
FR 182	H2O2	72	0.249	0.202	0.271	0.207	0.201	0.291
FR 183	H2O2	77	0.324	0.293	0.317	0.203	0.219	0.314
FR 184	H202	55	0.235	0.277	0.233	0.207	0.201	0.231
FR 185	H2O2	80	0.470	0.374	0.000	0.381	0.398	0.462
FR 189	H2O2	77	0.314	0.288	0.311	0.295	0.294	0.332
FR 190	H2O2	84	0.452	0.365	0.396	0.272	0.267	0.298
FR 191	H2O2	71	0.316	0.289	0.312	0.294	0.293	0.331

Probe-Nr.	Auf- bereitung	Illit/Chlorit Verhältnis (Illit %)	10 Å- CIS Δ°2Θ	Illit Frey ∆°2Θ	(FWHM) Meßwert ∆°2Θ	7 Å- CIS Δ°2Θ	Chlorit Frey ∆°2⊖	(FWHM) Meßwert Δ°2Θ
FR 192a	H2O2	84	0.299	0.280	0.302	0.290	0.288	0.325
FR 192b	H2O2	85	0.580	0.436	0.475	0.427	0.452	0.530
FR 193	H2O2	85	0.605	0.449	0.490	0.371	0.386	0.447
FR 194	H2O2	83	0.587	0.439	0.479	0.303	0.304	0.345
FR 195	H2O2	82	0.725	0.516	0.564	0.312	0.315	0.358
FR 196	H2O2	77	0.459	0.368	0.400	0.317	0.320	0.365
FR 197	H2O2	87	0.576	0.433	0.472	0.444	0.473	0.556

Anhang: Tabelle IV

			10Å	- Illit -	Peak					
		Meß-	FWHM		Peak-	Peak-	Peak-	Integral-		
Probe	Auf-	werte	(MW)	s1	Lage	Intensität	Fläche	breite	BB1	Esquevin
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$	Index	Index
K2	US	3	0,380	4,011	10,026	1396	69645	0,499	2,070	0,446
K2	H2O2	3	0,383	0,395	10,037	1779	89657	0,504	2,220	0,459
K3	NADA	3	0,291	1,581	10,015	1498	59354	0,396	1,650	0,613
K3	US	3	0,296	0,405	10,015	1669	67451	0,403	1,940	0,576
K3	H2O2	3	0,321	1,176	10,026	1886	80965	0,429	2,000	0,536
K5	NADA	3	0,234	2,340	10,026	1806	58642	0,325	1,830	0,514
K5	US	3	0,241	1,646	10,015	2044	67110	0,328	1,610	0,497
K5	H2O2	3	0,282	2,837	10,026	2161	80375	0,372	1,690	0,466
K6	NADA	3	0,259	0,465	10,026	2056	71864	0,350	1,800	0,519
K6	US	3	0,260	1,158	10,026	2581	90447	0,350	1,850	0,490
K6	H2O2	3	0,267	1,161	10,015	2605	94490	0,363	1,970	0,449
K7	NADA	3	0,275	1,273	10,026	734	25525	0,348	1,480	0,650
K7	US	6	0,190	2,011	10,015	610	15894	0,261	1,510	0,543
K7	H2O2	3	0,207	3,267	10,026	1237	35306	0,285	1,360	0,523
K8	NADA	3	0,189	2,406	10,026	1673	43762	0,262	1,460	0,475
K8	US	6	0,198	1,399	10,003	531	14753	0,278	1,590	0,510
K8	H2O2	3	0,203	2,315	10,015	1595	43850	0,275	1,350	0,481
K9	US	4	0,214	3,700	10,049	339	10748	0,317	1,670	0,572
K9	H2O2	4	0,213	2,783	10,037	1244	35810	0,288	1,190	0,503
K11	H2O2	4	0,270	2,269	10,060	449	17462	0,389	1,550	0,497
K14	NADA	3	0,260	0,769	10,026	1045	43318	0,415	1,800	0,474
K14	US	3	0,260	0,462	10,026	1100	45529	0,414	1,740	0,517
K14	H2O2	3	0,293	1,497	10,026	1415	62783	0,444	1,820	0,452
K17	NADA	3	0,230	2,609	10,026	1065	33881	0,318	1,510	0,494
K17	NADA II	3	0,224	1,295	10,026	1025	32373	0,316	1,600	0,506
K17		3	0,235	1,277	10,026	1085	35853	0,330	1,850	0,535
K17		3	0,218	1,055	10,015	959	29687	0,310	1,570	0,546
K17		3	0,214	1,168	10,015	1068	33120	0,310	1,740	0,505
K17		3	0,220	1,818	10,026	1121	35251	0,314	1,670	0,517
K17	05	3	0,261	0,577	10,026	1031	36607	0,355	1,670	0,550
K17		ა ი	0,228	2,140	10,026	1079	30097	0,320	1,900	0,500
K17		ა ი	0,232	2,397	10,026	1076	30410	0,329	1,000	0,542
K17		2	0,239	1,907	10,015	1000	35067	0,340	1,030	0,510
K17		3	0,231	1 366	10,020	1003	37632	0,324	2 110	0,541
K17		2	0,229	2 057	10,020	1006	35207	0,000	2,110	0,511
K17		3	0,220	2 532	10,020	1030	34752	0,323	1,400	0,520
K17		3	0,232	2,332	10,020	1027	33478	0,330	1,500	0,513
K17		3	0,265	0 455	10,015	954	34889	0,366	1,860	0,514
K17	H2O2	3	0.231	0.519	10.026	1124	36370	0.324	1,630	0,490
K18	US	3	0.200	0.750	10.026	1963	55409	0.282	1,470	0,503
K18	H2O2	3	0.216	0.558	10.037	1794	53389	0.298	1.340	0,484
K19	US	4	0.196	1.330	10.037	710	19088	0.269	1.380	0.499
K19	H2O2	4	0.278	2.800	10.049	1341	47054	0.351	1.340	0.577
K20	NADA	3	0,235	2,128	10,026	1343	43808	0,326	1,800	0,518
K20	US	3	0,235	1,277	10,026	1523	49548	0,325	1,660	0,547
K20	H2O2	3	0,276	1,123	10,026	2289	83520	0,365	1,740	0,494
K21	NADA	3	0,221	1,598	10,015	573	17523	0,306	1,350	0,525
K21	US	3	0,230	2,043	10,015	780	24461	0,311	1,360	0,515
K21	H2O2	3	0,241	1,120	10,015	860	28016	0,326	1,460	0,556
K22A15	US	4	0,229	1,366	10,037	699	22291	0,319	1,690	0,499
K22A15	H2O2	4	0,339	1,356	10,015	1197	50813	0,425	1,850	0,525
K22-50A	US	4	0,322	2,656	10,015	510	22649	0,317	1,580	0,449
K22-50A	H2O2	4	0,411	0,711	10,037	1351	68670	0,508	1,880	0,474
K23	US	3	0,307	0,814	10,003	262	12222	0,466	1,950	0,447
K23	H2O2	3	0,378	2,249	10,015	847	41506	0,490	2,070	0,491
K24	H2O2	3	0,309	1,003	10,037	2067	86943	0,421	2,020	0,432
K25	H2O2	4	0,244	1,203	10,026	1771	58458	0,330	1,820	0,484

Anhang: Tabelle IV

			10Å	- Illit -	Peak					
		Meß-	FWHM		Peak-	Peak-	Peak-	Integral-		
Probe	Auf-	werte	(MW)	s1	Lage	Intensität	Fläche	breite	BB1	Esquevin
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$	Index	Index
K26	NADA	3	0,210	1,442	10,015	1214	34821	0,287	1,380	0,541
K26	US	3	0,209	1,292	10,015	1772	51599	0,291	1,640	0,474
K26	H2O2	3	0,257	0,584	10,015	1931	65415	0,339	1,660	0,532
K27	NADA	3	0,214	1,286	10,003	1111	32916	0,296	1,460	0,468
K27	US	3	0,217	0,968	10,003	1625	49050	0,302	1,720	0,501
K27	H2O2	3	0,207	1,024	10,015	1350	39070	0,267	1,810	0,487
K28	NADA	3	0,203	0,594	10,015	1965	56552	0,288	1,860	0,476
K28	US	3	0,213	1,174	10,015	2103	61369	0,292	1,570	0,490
K28	H2O2	3	0,229	0,664	10,015	2601	79194	0,304	1,400	0,508
K29	NADA	3	0,189	1,217	10,015	1352	36665	0,271	1,690	0,456
K29	US	3	0,194	1,823	10,015	1641	44283	0,270	1,520	0,480
K29	H2O2	3	0,213	2,170	10,015	1429	41723	0,292	1,430	0,519
K30	US	3	0,224	4,554	10,026	980	29565	0,302	1,400	0,535
K30	H2O2	3	0,288	1,458	10,049	1149	41602	0,362	1,440	0,605
K31	NADA	3	0,198	1,162	10,015	1689	45938	0,272	1,260	0,527
K31	US	3	0,209	0,577	10,015	1519	42796	0,282	1,320	0,511
K31	H2O2	3	0,218	0,461	10,015	1718	51203	0,298	1,570	0,485
K32	H2O2	4	0,220	1,727	10,015	1678	50389	0,300	1,590	0,467
K33	H2O2	4	0,250	1,265	10,037	2767	90435	0,327	1,470	0,532
K34	NADA	3	0,232	1,522	10,026	1635	50223	0,307	1,470	0,522
K34	US	3	0,221	1,142	10,026	2155	64626	0,300	1,630	0,478
K34	H2O2	3	0,240	1,046	10,026	1992	64331	0,323	1,580	0,481
K35	H2O2	4	0,243	1,245	10,037	1923	62971	0,327	1,570	0,485
K36	US	3	0,250	1,587	10,015	2096	69974	0,334	1,710	0,458
K37	NADA	4	0,217	0,599	10,015	2117	62900	0,297	1,650	0,494
K37	US	3	0,224	3,833	10,015	2650	79468	0,300	1,450	0,539
K37	H2O2	3	0,248	1,918	10,026	2981	98019	0,329	1,590	0,550
K39	NADA	4	0,281	7,563	10,015	299	12918	0,432	2,090	0,602
K41	NADA	4	0,233	4,174	10,026	315	10854	0,345	1,950	0,559
K42-1	NADA	4	0,227	1,814	10,026	228	7923	0,347	1,760	0,605
K42-2	NADA	4	0,215	3,843	10,015	204	6838	0,335	1,690	0,554
K43	NADA	4	0,221	1,570	10,015	234	7942	0,339	1,760	0,547
K45	NADA	4	0,264	6,616	9,992	102	3678	0,361	1,600	0,637
K46	NADA	4	0,214	5,209	10,037	394	12633	0,321	1,490	0,624
K47	NADA	4	0,317	1,230	10,026	1329	58504	0,440	2,020	0,513
K49	NADA	4	0,236	2,692	10,037	699	23418	0,335	1,740	0,486
K50	NADA	4	0,233	1,255	10,037	1058	35219	0,333	1,980	0,555
K51	NADA	4	0,230	2,350	10,026	895	28762	0,321	2,210	0,531
K52	NADA	4	0,214	0,379	10,003	1533	45887	0,299	2,200	0,532
K53	NADA	4	0,203	1,634	10,026	749	21417	0,286	1,350	0,511
K54	NADA	4	0,324	4,300	10,037	627	26458	0,422	1,710	0,507
K55	NADA	3	0,213	4,762	10,026	411	12808	0,312	1,530	0,528
K56	NADA	4	0,205	3,054	10,037	789	23102	0,293	1,460	0,521
K57	US	4	0,330	2,733	10,015	704	30109	0,428	1,670	0,517
K58-1	US	4	0,316	1,798	10,060	659	28234	0,428	1,980	0,472
K58-2	US	4	0,327	2,043	10,026	409	18244	0,446	1,790	0,482
K59	US	4	0,295	3,275	10,049	747	27680	0,371	1,430	0,491
K60	US	4	0,294	1,384	10,037	1088	40949	0,376	1,660	0,570
K61	US	4	0,341	1,557	10,049	1198	55609	0,464	1,770	0,483
K62-1	US	4	0,390	0,769	10,060	1038	52734	0,508	2,000	0,416
K62-2	US	4	0,346	1,157	10,049	740	35868	0,485	2,190	0,447
K63	US	4	0,335	1,420	10,026	917	39277	0,428	1,700	0,530
K64	US	4	0,383	0,345	10,060	1226	59754	0,487	1,760	0,445
K65	US	4	0,321	1,031	10,072	1373	57130	0,416	1,860	0,571
K66	US	4	0,249	1,365	10,026	1441	47636	0,331	1,470	0,480
K67	US	4	0,255	2,549	10,037	1452	49202	0,339	1,640	0,496
K68	US	4	0,213	1,422	10,026	1563	44333	0,284	1,400	0,541
K69	US	4	0,229	1,834	10,015	1803	55709	0,309	1,620	0,508

Anhang: Tabelle IV

Probe Numme Net- bereitung FWI- n FWI- N(MW) FWI- S Peak A Peak Intensitit Peak Courts Densitie Courts Test Courts Densitie Courts Densitie Courts <thdensit is="" series<="" term="" th="" the=""> Densitie Cour</thdensit>				10Å	- Illit -	Peak					
Prob Aurie verte Aurie S A Counts Counts Aurie Barle Dereving Nummer bereiung n Aurie 32.9 16.3 32.9 16.3 32.9 16.4 0.244 1.399 10.026 57.7 1964.3 0.333 2.020 0.513 K71 US 4 0.224 1.399 10.026 1778 40883 0.347 1.790 0.433 K73 US 4 0.227 1.584 10.026 1770 3.98218 0.311 1.440 0.442 K76 US 4 0.228 1.681 10.015 1131 3.9218 0.311 1.440 0.448 K76 US 4 0.228 1.681 10.015 1138 34257 0.301 1.644 0.449 K774 US 4 0.242 1.300 1.015 1888 4452 0.281 1.400 0.452 K774			Meß-	FWHM		Peak-	Peak-	Peak-	Integral-		
Nummer Pereitung n A*20 % Å Counts Counts A*20 Index K70 US 4 0.233 2.155 10.026 557 19643 0.333 2.200 0.513 K72 US 4 0.244 1.399 10.037 1573 55807 0.374 1.860 0.442 K74 US 4 0.220 2.138 10.003 1599 44209 0.276 1.370 0.503 K75 US 4 0.228 3.467 10.015 1133 38495 0.311 1.440 0.481 K77 US 4 0.224 1.355 10.026 1707 49012 0.287 1.240 0.517 K78 US 4 0.214 1.325 10.001 1643 4557 0.304 2.720 0.502 K78 US 4 0.224 1.232 10.003 1670 444489 0.303 2.310<	Probe	Auf-	werte	(MW)	s1	Lage	Intensität	Fläche	breite	BB1	Esquevin
K70 US 4 0.233 2,155 10.026 557 19643 0.353 2,020 0.513 K71 US 4 0.244 1.399 10.026 1178 40883 0.347 1.780 0.432 K73 US 4 0.2261 1.545 10.026 1776 58807 0.374 1.860 0.442 K74 US 4 0.227 1.888 10.015 1132 34495 0.310 1610 0.478 K75 US 4 0.228 1.847 10.015 1131 34137 0.313 1.840 0.488 K77- US 4 0.228 1.847 10.015 1313 41437 0.311 1.444 0.448 0.448 K78- US 4 0.224 1.335 10.026 1167 44952 0.227 1.440 0.448 K78- US 4 0.226 0.059 1.037 1.435 0.044	Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$	Index	Index
KY0 US 4 0.233 2,155 10.026 557 19643 0.333 2.20 0.513 KY2 US 4 0.274 0.803 10.037 1573 58807 0.334 1.860 0.442 KY3 US 4 0.250 1.545 10.003 1599 44209 0.276 1.370 0.6433 K76 US 4 0.227 1.888 10.015 1133 38218 0.311 1.440 0.447 K77 US 4 0.228 3.467 10.015 1133 38218 0.311 1.440 0.448 K77 US 4 0.224 1.355 10.005 1015 14427 0.313 1.560 0.477 K78 US 4 0.213 2.662 1003 1670 44912 0.280 1.470 0.485 K78 US 4 0.264 1.232 1.003 16170 44912 0.281											
KY1 US 4 0.244 1.399 10.026 1178 40883 0.347 1.780 0.442 KY2 US 4 0.250 1.545 10.026 1760 5807 0.31 1.560 0.442 KY4 US 4 0.227 1.586 10.015 1133 34895 0.310 1.610 0.478 K76 US 4 0.228 1.681 10.015 1131 34921 0.311 1.440 0.481 K77 US 4 0.215 1.355 10.026 1707 4012 0.287 1.480 0.548 K78+ US 4 0.215 1.355 10.026 1707 4012 0.287 1.480 0.548 K78+ US 4 0.215 1.435 10.015 1844 35475 0.301 1.644 0.518 K81 US 4 0.224 1.526 10.015 1844 3547 0.301	K70	US	4	0,233	2,155	10,026	557	19643	0,353	2,020	0,513
KT3 US 4 0.274 0.803 10.037 1573 5807 0.374 1.860 0.442 KT4 US 4 0.2207 2.138 10.003 1599 44209 0.276 1.370 0.503 K76 US 4 0.228 3.467 10.015 1133 35218 0.311 1.440 0.4478 K77 US 4 0.228 1.681 10.015 1315 1400 0.587 K78-1 US 4 0.2213 1.681 10.015 1548 45322 0.287 1.240 0.551 K78-1 US 4 0.224 1.230 10.015 1844 5437 0.301 1.640 0.551 K78 US 4 0.224 1.230 1.015 1845 43577 0.304 2.700 0.552 K80 US 2 0.223 1.581 10.003 1670 44845 0.290 1.630 0.44	K71	US	4	0,244	1,399	10,026	1178	40883	0,347	1,790	0,463
K74 US 4 0.250 1.545 10.026 1760 58319 0.331 1.560 0.447 K75 US 4 0.227 1.858 10.015 1128 34985 0.310 1.610 0.463 K76 US 4 0.228 1.861 10.015 1518 34218 0.311 1.440 0.481 K77+ US 4 0.221 1.355 10.026 1707 49012 0.287 1.480 0.448 K78+1 US 4 0.211 1.322 10.015 1842 55475 0.301 1.644 0.519 K81 US 4 0.223 1.282 1.0026 1164 3681 0.332 2.840 0.470 0.485 K82 US 4 0.220 1.0026 1164 3661 0.332 2.840 0.477 K84 US 2 0.241 1.582 10.003 1.640 0.332 2.340	K72	US	4	0,274	0,803	10,037	1573	58807	0,374	1,860	0,422
Kr7s US 4 0.027 2.138 10.003 1599 44209 0.276 1.370 0.633 Kr6 US 4 0.228 3.467 10.015 1133 32518 0.311 1.440 0.4478 Kr7 US 4 0.228 1.681 10.015 1135 41337 0.315 1.440 0.458 Kr7s-1 US 4 0.213 1.435 10.015 1588 45522 0.287 1.280 0.517 Kr9 US 4 0.224 1.300 10.015 1642 54375 0.3014 1.740 0.452 K81 US 4 0.226 0.296 10.015 1641 36811 0.332 2.440 0.4477 K84 US 2 0.226 1.581 10.026 1164 36811 0.332 2.340 0.4475 K83 US 2 0.226 1.582 10.015 1144 3488	K73	US	4	0,250	1,545	10,026	1760	58319	0,331	1,560	0,447
K76 US 4 0.227 1.888 10.015 1128 34865 0.310 1.610 0.481 K77 US 4 0.228 1.681 10.015 1138 41.437 0.315 1.480 0.488 K78-1 US 4 0.2215 1.355 10.026 1707 49012 0.287 1.400 0.528 K79 US 4 0.224 1.0015 1282 71937 0.274 1.400 0.528 K81 US 4 0.224 1.0021 1.015 1484 52458 0.280 1.470 0.528 K82 US 4 0.220 1.0003 1670 4845 0.280 1.470 0.501 K84 US 2 0.223 1.584 10.003 1670 4845 0.232 2.840 0.4462 K86 US 2 0.223 1.550 10.015 1345 40.335 1.300 0.4462	K74	US	4	0,207	2,136	10,003	1599	44209	0,276	1,370	0,503
K76 US 4 0.228 3,467 10,015 1133 3218 0.311 1,440 0.448 K77+ US 4 0.223 1,681 0.015 1354 41437 0.315 1,440 0.448 K77+2 US 4 0.2213 1,435 10,015 1848 45522 0.287 1,240 0.5518 K77 US 4 0.224 1,300 10,015 1842 55475 0.301 1,400 0.552 K81 US 4 0.206 2.069 10,015 1842 55475 0.301 1,740 0.483 K81 US 2 0.226 1,622 10,026 1164 36611 0.332 2,840 0.477 K84 US 2 0.226 1,652 10,015 1144 34689 0.303 1,530 0,335 1,530 0,483 K87 US 4 0.226 <th1,582< th=""> <th10,015< th=""> 1735<</th10,015<></th1,582<>	K75	US	4	0,227	1,858	10,015	1128	34985	0,310	1,610	0,478
Kr7 US 4 0.228 1.681 10.015 1315 41437 0.315 1.840 0.488 Kr78-1 US 4 0.215 1.385 10.026 1707 44012 0.227 1.400 0.547 Kr79 US 4 0.214 1.330 10.015 2625 71937 0.274 1.400 0.520 K81 US 4 0.224 1.300 1.015 1842 55475 0.301 1.644 0.512 K81 US 4 0.209 0.995 10.003 1670 48485 0.280 1.477 0.444 K84 US 2 0.221 1.584 10.0026 1164 38611 0.332 2.340 0.447 K86 US 2 0.223 1.584 10.0026 1164 3861 0.332 2.310 0.445 K87 US 4 0.246 2.490 10.015 1235 4520 0.33	K76	US	4	0,228	3,467	10,015	1133	35218	0,311	1,440	0,481
Kr8-1 US 4 0.213 1.435 10.016 1588 45522 0.287 1.280 0.517 Kr7a US 4 0.204 1.322 10.015 2625 71937 0.274 1.400 0.520 K80 US 4 0.224 1.300 10.015 1842 55475 0.304 2.720 0.503 K81 US 4 0.218 2.062 10.037 1435 438511 0.332 2.440 0.4455 K83 US 2 0.226 1.662 10.003 1670 48485 0.280 1.337 0.346 3.310 0.4671 K84 US 2 0.226 1.662 10.003 375 13299 0.328 1.340 0.4622 K87 US 4 0.244 2.369 10.003 375 12399 0.338 1.340 0.462 K86 US 4 0.245 2.359 10.003 1	K77	US	4	0,228	1,681	10,015	1315	41437	0,315	1,840	0,458
Kr8-2 US 4 0.215 1.356 10.026 1707 49012 0.287 1.280 0.517 Kr9 US 4 0.224 1.300 10.015 1842 55475 0.314 2.727 1.500 0.519 K81 US 4 0.220 2.052 10.003 1435 4357 0.314 2.720 0.502 K82 US 4 0.206 2.059 10.003 1670 44845 0.280 1.470 0.483 K84 US 2 0.221 1.584 10.0026 1164 38611 0.332 2.340 0.477 K86 US 2 0.223 1.584 10.0026 1184 3.430 0.333 2.310 0.493 K87 US 4 0.244 3.669 10.003 375 12999 0.347 1.400 0.467 K88 US 4 0.244 3.669 <th0.031< th=""> 3129 0.334<!--</th--><th>K78-1</th><th>US</th><th>4</th><th>0,213</th><th>1,435</th><th>10,015</th><th>1588</th><th>45522</th><th>0,287</th><th>1,400</th><th>0,548</th></th0.031<>	K78-1	US	4	0,213	1,435	10,015	1588	45522	0,287	1,400	0,548
K79 US 4 0.204 1.232 10.015 2625 71937 0.274 1.400 0.520 K80 US 4 0.213 2.062 10.015 1842 55475 0.301 1.544 0.550 K81 US 4 0.216 2.059 10.015 1861 52158 0.280 1.530 0.477 K84 US 2 0.221 1.584 10.003 1670 48485 0.230 1.530 0.447 K85 US 2 0.221 1.582 10.015 1144 34689 0.333 2.310 0.445 K86 US 4 0.224 1.562 10.015 1735 43620 0.333 2.310 0.456 K87 US 4 0.246 2.369 10.0126 1937 43744 0.385 2.360 0.506 K81 US 4 0.246 2.400 10.032 1377 43744 0.333<	K78-2	US	4	0,215	1,355	10,026	1707	49012	0,287	1,280	0,517
K80 US 4 0.224 1.300 10.015 1842 55475 0.301 1.644 0.519 K81 US 4 0.206 2.059 10.015 1861 52158 0.280 1.470 0.485 K82 US 2 0.241 0.299 10.003 1164 38611 0.332 2.440 0.4467 K84 US 2 0.223 1.584 10.003 2081 62729 0.308 3.050 0.485 K86 US 2 0.226 1.562 10.015 1144 34689 0.303 2.310 0.485 K87 US 4 0.244 2.369 10.013 375 12399 0.347 1.400 0.467 K88 US 4 0.244 2.403 10.003 1329 0.335 1.590 0.525 K91 US 4 0.226 1.479 1.0037 1329 0.344 1.500 0.486 </th <th>K79</th> <th>US</th> <th>4</th> <th>0,204</th> <th>1,232</th> <th>10,015</th> <th>2625</th> <th>71937</th> <th>0,274</th> <th>1,400</th> <th>0,520</th>	K79	US	4	0,204	1,232	10,015	2625	71937	0,274	1,400	0,520
K81 US 4 0.213 2.062 10.037 1435 43577 0.304 2.720 0.502 K82 US 2 0.209 0.995 10.003 1670 48455 0.280 1.470 0.4485 K83 US 2 0.220 1.562 10.015 1184 38611 0.332 2.840 0.483 K86 US 2 0.226 1.562 10.015 1144 34689 0.333 2.310 0.483 K87 US 4 0.248 2.389 10.015 1235 40520 0.338 1,400 0.467 K89 US 4 0.274 1,022 10.033 1737 43744 0.335 1,590 0.525 K91 US 4 0.226 2,480 10.037 1374 43744 0.335 1,590 0,526 K94 US 4 0.226 1,439 10.037 <th4574< th=""> 0.336 1,510<!--</th--><th>K80</th><th>US</th><th>4</th><th>0,224</th><th>1,300</th><th>10,015</th><th>1842</th><th>55475</th><th>0,301</th><th>1,644</th><th>0,519</th></th4574<>	K80	US	4	0,224	1,300	10,015	1842	55475	0,301	1,644	0,519
K82 US 4 0.206 2.059 10.015 1861 52158 0.208 1.470 0.485 K83 US 2 0.241 0.290 10.026 1164 38611 0.332 2.840 0.4477 K84 US 2 0.223 1.584 10.003 2081 62729 0.308 3.650 0.483 K86 US 4 0.238 1.073 10.026 1993 62743 0.315 1.370 0.501 K88 US 4 0.248 2.369 10.003 375 12999 0.335 1.590 0.555 K90 US 4 0.246 2.490 10.032 1367 45734 0.335 1.590 0.555 K92 US 4 0.226 2.431 10.037 1363 40.316 0.303 1.310 0.544 K90 US 4 0.228 1.092 1565 <th0501< th=""> 0.318 <th1.420< th=""></th1.420<></th0501<>	K81	US	4	0,213	2,062	10,037	1435	43577	0,304	2,720	0,502
K83 US 2 0.209 0.995 10.003 1670 48485 0.230 1.530 0.477 K84 US 2 0.223 1,584 10.003 2081 62729 0.303 2,340 0.4483 K86 US 2 0.226 1,562 10.015 1144 34689 0.303 2,310 0.4485 K87 US 4 0.238 1,073 10.026 1933 62743 0.335 1,370 0.4467 K89 US 4 0.244 3,659 10.003 375 1299 0.347 1,400 0.467 K90 US 4 0.244 2,025 2,213 10.026 1068 36745 0.336 1,310 0.525 K91 US 4 0.245 2,459 10.037 429 15619 0.318 1,420 0.541 K94 US 4 0.326 1,489 <th0.327< th=""> 1,340 0,425<th>K82</th><th>US</th><th>4</th><th>0,206</th><th>2,059</th><th>10,015</th><th>1861</th><th>52158</th><th>0,280</th><th>1,470</th><th>0,485</th></th0.327<>	K82	US	4	0,206	2,059	10,015	1861	52158	0,280	1,470	0,485
K84 US 2 0.241 0.290 10.026 1164 38611 0.332 2.840 0.443 K85 US 2 0.226 1.562 10.015 1144 34689 0.303 2.310 0.4453 K87 US 4 0.226 1.562 10.015 1144 34689 0.303 2.310 0.462 K88 US 4 0.248 2.369 10.003 375 12999 0.347 1.400 0.462 K90 US 4 0.246 2.400 10.032 1367 45734 0.335 1.580 0.525 K91 US 4 0.226 2.421 1.002 1367 45734 0.333 1.310 0.545 K93 US 4 0.226 2.659 10.037 1372 43744 0.334 1.420 0.436 K94 US 4 0.226 2.659 10.026 <th150< th=""> 493612 0.342<th>K83</th><th>US</th><th>2</th><th>0,209</th><th>0,995</th><th>10,003</th><th>1670</th><th>48485</th><th>0,290</th><th>1,530</th><th>0,477</th></th150<>	K83	US	2	0,209	0,995	10,003	1670	48485	0,290	1,530	0,477
K85 US 2 0.223 1.584 10,003 2081 62729 0.308 3.050 0.485 K86 US 2 0.228 1.673 10,025 1144 34689 0.303 2.310 0.4455 K87 US 4 0.248 1.073 10,025 1144 34689 0.332 1.940 0.4657 K89 US 4 0.224 3.659 10,003 737 1299 0.347 1.400 0.4677 K90 US 4 0.224 2.203 10,003 1329 40316 0.303 1.310 0.525 K91 US 4 0.226 1.489 10,015 1755 55601 0.318 1.420 0.475 K94 US 4 0.226 2.659 10.037 429 15619 0.314 1.600 0.432 K94 US 4 0.226 1.630 1.630 1.622 3031 2.1600 </th <th>K84</th> <th>US</th> <th>2</th> <th>0,241</th> <th>0,290</th> <th>10,026</th> <th>1164</th> <th>38611</th> <th>0,332</th> <th>2,840</th> <th>0,467</th>	K84	US	2	0,241	0,290	10,026	1164	38611	0,332	2,840	0,467
K86 US 2 0.226 1.562 10,015 1144 34689 0.303 2.310 0.485 K87 US 4 0.248 1,073 10,026 1993 62743 0.315 1,370 0,501 K88 US 4 0.248 2,369 10,015 1235 40520 0.328 1,940 0.462 K90 US 4 0.274 1,022 10,032 1367 45734 0.335 1,590 0.555 K91 US 4 0.225 2,213 10,003 1329 40316 0.303 1,310 0,544 K93 US 4 0.226 1,429 10,015 1755 55801 0.318 1,420 0.475 K95 US 4 0.326 2,659 10,037 1800 38102 0.428 1,690 0,434 K97 US 4 0.324 1,979 9,992 1580 62976 0.391 <th>K85</th> <th>US</th> <th>2</th> <th>0,223</th> <th>1,584</th> <th>10,003</th> <th>2081</th> <th>62729</th> <th>0,308</th> <th>3,050</th> <th>0,483</th>	K85	US	2	0,223	1,584	10,003	2081	62729	0,308	3,050	0,483
K87 US 4 0,238 1,073 10,026 1993 6274 0,315 1,370 0,501 K88 US 4 0,244 2,369 10,015 1235 40520 0,328 1,940 0,462 K89 US 4 0,274 1,022 10,037 1137 4374 0,335 1,550 0,555 K91 US 4 0,224 2,203 10,003 1329 40316 0,303 1,310 0,544 K93 US 4 0,225 2,213 10,026 1068 36745 0,334 1,610 0,434 K94 US 4 0,243 4,767 10,037 429 1561 0,342 1,600 0,446 K97 US 4 0,304 1,197 9,992 1580 62376 0,399 1,580 0,432 K98 US 4 0,228 1,690 10,026 1202 39042 0,325	K86	US	2	0,226	1,562	10,015	1144	34689	0,303	2,310	0,495
K88 US 4 0.248 2.369 10.015 1235 40520 0.328 1.940 0.462 K89 US 4 0.254 3.569 10.003 375 12999 0.347 1.400 0.467 K90 US 4 0.246 2.400 10.032 1367 43744 0.335 1.590 0.525 K92 US 4 0.2265 2.213 10.026 1068 36745 0.344 1,500 0.448 K94 US 4 0.226 2,613 10.015 1755 5580 0.318 1,420 0.475 K95 US 4 0.326 2,659 10.037 890 38102 0.428 1,600 0.416 K97 US 4 0.328 1,992 1580 6.2976 0.339 1,580 0.432 K98 US 4 0.228 1,092 1580 6.2976 0.332 1,470 0,452 <th>K87</th> <th>US</th> <th>4</th> <th>0,238</th> <th>1,073</th> <th>10,026</th> <th>1993</th> <th>62743</th> <th>0,315</th> <th>1,370</th> <th>0,501</th>	K87	US	4	0,238	1,073	10,026	1993	62743	0,315	1,370	0,501
K89 US 4 0.254 3,569 10,003 375 1299 0.347 1,400 0.467 K90 US 4 0.274 1,022 10,037 1137 43744 0.385 2,360 0,506 K91 US 4 0.224 2,203 10,032 1367 45734 0.335 1,500 0,525 K92 US 4 0.225 2,213 10,003 1329 40316 0,303 1,310 0,544 K94 US 4 0.236 1,677 10,037 890 38102 0,344 1,610 0,434 K96 US 4 0.304 1,197 9,992 1580 62976 0.399 1,800 0,432 K98 US 4 0.304 1,992 1580 62976 0.399 1,710 0,470 K100 US 4 0.246 1,306 10,026 1447 49362 0.322 1,770	K88	US	4	0,248	2,369	10,015	1235	40520	0,328	1,940	0,462
K90 US 4 0.274 1,022 10,037 1137 43734 0.385 2,360 0.505 K91 US 4 0.246 2,490 10,003 1327 45734 0.335 1,590 0.525 K92 US 4 0.226 2,203 10,006 1068 36745 0.344 1,500 0.454 K94a US 4 0.236 1,489 10,015 1755 55801 0.318 1,420 0,475 K95 US 4 0.326 2,659 10,037 429 15619 0.342 1,600 0.434 K97 US 4 0.328 1,602 10,026 1590 49555 0.312 1,420 0,521 K99 US 4 0.246 1,505 10,026 1387 49362 0.322 1,540 0,442 K100 US 4 0.243 1,545 10,026 1487 49362 0.332<	K89	US	4	0,254	3,569	10,003	375	12999	0,347	1,400	0,467
K91 US 4 0.246 2,490 10,032 1367 45734 0.335 1,590 0,525 K92 US 4 0.224 2,203 10,003 1329 40316 0.303 1,310 0,544 K93 US 4 0.256 2,131 10,015 1755 55801 0,318 1,420 0,475 K96 US 4 0.236 1,676 10,037 890 38102 0,428 1,610 0,434 K96 US 4 0.304 1,197 9,992 1580 62976 0.399 1,580 0,432 K98 US 4 0.248 1,002 10,026 1202 39042 0.325 1,470 0,470 K101 US 4 0.243 1,545 10,026 1202 39042 0.325 1,470 0,470 K104 US 4 0.243 1,572 10,043 <th167< th=""> 67140 0.401<th>K90</th><th>US</th><th>4</th><th>0,274</th><th>1,022</th><th>10,037</th><th>1137</th><th>43744</th><th>0,385</th><th>2,360</th><th>0,506</th></th167<>	K90	US	4	0,274	1,022	10,037	1137	43744	0,385	2,360	0,506
K92 US 4 0.224 2.203 10.003 1329 40316 0.303 1,310 0.544 K93a US 4 0.236 1.489 10.015 1755 55801 0.318 1.600 0.486 K94a US 4 0.236 1.489 10.015 1755 55801 0.318 1.610 0.432 K96 US 4 0.326 2.659 10.037 890 38102 0.428 1.600 0.416 K97 US 4 0.304 1.197 9.992 1580 62976 0.399 1.580 0.432 K98 US 4 0.248 1.092 1.0026 1202 39042 0.322 1.470 0.4452 K100 US 4 0.246 1.306 10.026 1202 39042 0.332 1.540 0.482 K104 US 4 0.243 1.545 10.026 1538 51095 0.33	K91	US	4	0,246	2,490	10,032	1367	45734	0,335	1,590	0,525
K93 US 4 0.255 2.213 10.026 1068 36745 0.344 1,500 0.486 K94a US 4 0.236 1,489 10.015 1755 55601 0.318 1,420 0.475 K95 US 4 0.243 4,767 10.037 480 38102 0.428 1,600 0.434 K96 US 4 0.324 1,922 1580 6276 0.399 1,580 0.432 K98 US 4 0.228 1,092 10.026 1580 49555 0.312 1,420 0.521 K99 US 4 0,228 1,092 10.026 1202 0.332 1,470 0,482 K101 US 4 0,243 1,545 10.026 1538 51095 0.332 1,540 0,482 K104 US 4 0,233 0,461 1,026 1538 51095 0.332 1,570 0,460 <th>K92</th> <th>US</th> <th>4</th> <th>0,224</th> <th>2,203</th> <th>10,003</th> <th>1329</th> <th>40316</th> <th>0,303</th> <th>1,310</th> <th>0,544</th>	K92	US	4	0,224	2,203	10,003	1329	40316	0,303	1,310	0,544
K94a US 4 0,236 1,489 10,015 1755 55801 0,318 1,420 0,475 K95 US 4 0,236 2,659 10,037 429 15619 0,364 1,610 0,434 K96 US 4 0,326 2,659 10,037 429 1580 62976 0,399 1,580 0,432 K98 US 4 0,228 1,092 10,037 1072 43031 0,401 1,710 0,472 K99 US 4 0,248 1,366 10,026 1202 39042 0,325 1,470 0,482 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,484 K102 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,457 K105 US 4 0,237 1,941 <th10,026< th=""> 1538 51095<!--</th--><th>K93</th><th>US</th><th>4</th><th>0,255</th><th>2,213</th><th>10,026</th><th>1068</th><th>36745</th><th>0,344</th><th>1,500</th><th>0,486</th></th10,026<>	K93	US	4	0,255	2,213	10,026	1068	36745	0,344	1,500	0,486
K95 US 4 0,243 4,767 10,037 429 15619 0,364 1,610 0,434 K96 US 4 0,324 2,659 10,037 890 38102 0,428 1,600 0,416 K97 US 4 0,324 1,197 9,992 1580 62976 0,399 1,580 0,432 K98 US 4 0,228 1,092 10,026 1590 49555 0,312 1,420 0,521 K100 US 4 0,243 1,365 10,026 1487 49362 0,332 1,540 0,482 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K102 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,457 K105 US 4 0,237 1,941 0,026 1538 51095 0,332 </th <th>K94a</th> <th>US</th> <th>4</th> <th>0,236</th> <th>1,489</th> <th>10,015</th> <th>1755</th> <th>55801</th> <th>0,318</th> <th>1,420</th> <th>0,475</th>	K94a	US	4	0,236	1,489	10,015	1755	55801	0,318	1,420	0,475
K96 US 4 0,326 2,659 10,037 890 38102 0,428 1,600 0,416 K97 US 4 0,304 1,197 9,992 1580 62976 0,399 1,580 0,432 K98 US 4 0,228 1,002 1590 4505 0,312 1,420 0,521 K100 US 4 0,243 1,545 10,026 1202 39042 0,322 1,540 0,482 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K102 US 4 0,291 1,672 10,043 675 67140 0,401 1,780 0,482 K104 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,4453 K105 US 4 0,263 0,962 10,003 1546 0,238 1,370 0,453<	K95	US	4	0,243	4,767	10,037	429	15619	0,364	1,610	0,434
K97 US 4 0,304 1,197 9,992 1580 62976 0,399 1,580 0,432 K98 US 4 0,228 1,092 10,026 1590 49555 0,312 1,420 0,521 K99 US 4 0,246 1,306 10,026 1202 39042 0,325 1,470 0,452 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K102 US 4 0,249 1,672 10,043 1675 67140 0,401 1,780 0,482 K103 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,4453 K106a US 4 0,237 1,941 10,026 1538 51095 0,332 1,370 0,4453 K106b US 4 0,236 2,862 10,026 1588 68470 <th< th=""><th>K96</th><th>US</th><th>4</th><th>0,326</th><th>2,659</th><th>10,037</th><th>890</th><th>38102</th><th>0,428</th><th>1,600</th><th>0,416</th></th<>	K96	US	4	0,326	2,659	10,037	890	38102	0,428	1,600	0,416
K98US40,2281,09210,0261590495550,3121,4200,521K99US40,3092,99010,0371072430310,4011,7100,470K100US40,2461,30610,0261202390420,3251,4700,452K101US40,2991,67210,0431675671400,4011,7800,484K103US40,1902,5899,9812545709170,2791,3200,460K104US40,2630,96210,0032132849890,3991,6100,423K106aUS40,2630,96210,026553167560,3031,3400,510K106aUS40,2123,06210,026553167560,3031,3400,510K106aUS40,2362,86310,026553167560,3031,3400,510K109US40,2322,41510,0431125360360,3201,3800,420K111US40,2322,41710,0261188684700,4311,8200,331K109US40,2322,92910,0371820776050,2780,4270,374K111US40,2322,92910,0311474487651,6200,3310,480K111US <th>K97</th> <th>US</th> <th>4</th> <th>0,304</th> <th>1,197</th> <th>9,992</th> <th>1580</th> <th>62976</th> <th>0,399</th> <th>1,580</th> <th>0,432</th>	K97	US	4	0,304	1,197	9,992	1580	62976	0,399	1,580	0,432
K99 US 4 0,309 2,990 10,037 1072 43031 0,401 1,710 0,470 K100 US 4 0,246 1,306 10,026 1202 39042 0,325 1,470 0,452 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K103 US 4 0,297 1,941 10,026 1538 51095 0,332 1,750 0,443 K104 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,457 K105 US 4 0,263 0,962 10,003 2132 84989 0,399 1,610 0,423 K106b US 4 0,212 3,062 10,026 1588 68470 0,431 1,820 0,338 K108 US 4 0,232 2,415 10,026 2187 93225 <th< th=""><th>K98</th><th>US</th><th>4</th><th>0,228</th><th>1,092</th><th>10,026</th><th>1590</th><th>49555</th><th>0,312</th><th>1,420</th><th>0,521</th></th<>	K98	US	4	0,228	1,092	10,026	1590	49555	0,312	1,420	0,521
K100 US 4 0,246 1,306 10,026 1202 39042 0,325 1,470 0,452 K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K102 US 4 0,299 1,672 10,043 1675 67140 0,401 1,780 0,484 K103 US 4 0,299 1,672 10,043 1545 70917 0,279 1,320 0,467 K104 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,457 K106a US 4 0,212 3,062 10,026 553 16756 0,303 1,340 0,423 K106a US 4 0,237 1,575 10,026 188 68470 0,341 1,820 0,338 K109 US 4 0,232 2,463 10,026 2187 93225 <th< th=""><th>K99</th><th>US</th><th>4</th><th>0,309</th><th>2,990</th><th>10,037</th><th>1072</th><th>43031</th><th>0,401</th><th>1,710</th><th>0,470</th></th<>	K99	US	4	0,309	2,990	10,037	1072	43031	0,401	1,710	0,470
K101 US 4 0,243 1,545 10,026 1487 49362 0,332 1,540 0,482 K102 US 4 0,299 1,672 10,043 1675 67140 0,401 1,780 0,484 K103 US 4 0,190 2,589 9,981 2545 7017 0,279 1,320 0,460 K104 US 4 0,263 0,962 10,003 2132 84989 0,399 1,610 0,423 K106a US 4 0,212 3,062 10,026 1553 16756 0,303 1,340 0,510 K108 US 4 0,232 2,663 10,026 1588 68470 0,331 0,424 K111 US 4 0,232 2,415 10,026 2187 93225 0,426 1,840 0,424 K111 US 4 0,232 2,929 10,003 1474 48765 1,620	K100	US	4	0,246	1,306	10,026	1202	39042	0,325	1,470	0,452
K102 US 4 0,299 1,672 10,043 1675 67140 0,401 1,780 0,484 K103 US 4 0,190 2,589 9,981 2545 70917 0,279 1,320 0,460 K104 US 4 0,237 1,941 10,026 1538 51095 0,332 1,750 0,457 K105 US 4 0,263 0,962 10,003 2132 84889 0,399 1,610 0,423 K106b US 4 0,212 3,062 10,026 1553 16756 0,303 1,340 0,510 K108 US 4 0,236 2,863 10,026 1588 68470 0,431 1,820 0,338 K109 US 4 0,236 2,461 10,043 1125 36036 0,320 1,380 0,502 K110 US 4 0,232 2,415 10,043 1125 36036 <th< th=""><th>K101</th><th>US</th><th>4</th><th>0,243</th><th>1,545</th><th>10,026</th><th>1487</th><th>49362</th><th>0,332</th><th>1,540</th><th>0,482</th></th<>	K101	US	4	0,243	1,545	10,026	1487	49362	0,332	1,540	0,482
K103US40,1902,5899,9812545709170,2791,3200,460K104US40,2371,94110,0261538510950,3321,7500,457K105US40,2630,96210,0032132849890,3991,6100,423K106aUS40,1991,46510,043536154600,2881,3700,453K106bUS40,2123,06210,026553167560,3031,3400,510K108US40,2362,86310,0261588684700,4311,8200,338K109US40,2322,41510,0431125360360,3201,3800,420K111US40,2322,41510,0431125360360,3201,3800,502K112US40,2322,92910,0031474487651,6200,3310,480K118US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,015717282770,3941,9400,470FR040H2O240,2123,59010,0371564611990,3911,7200,476FR041H2O240,2712,05410,02671934820,4851,7400,684FR042 <th< th=""><th>K102</th><th>US</th><th>4</th><th>0,299</th><th>1,672</th><th>10,043</th><th>1675</th><th>67140</th><th>0,401</th><th>1,780</th><th>0,484</th></th<>	K102	US	4	0,299	1,672	10,043	1675	67140	0,401	1,780	0,484
K104US40,2371,94110,0261538510950,3321,7500,457K105US40,2630,96210,0032132849890,3991,6100,423K106aUS40,1991,46510,043536154600,2881,3700,453K106bUS40,2123,06210,026553167560,3031,3400,510K108US40,2362,86310,0261588684700,4311,8200,338K109US40,2371,57510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2912,16710,055717282770,3941,9400,470FR040H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,2712,05410,0371094417390,3821,7200,494FR045H2O240,2712,05410,0371094417390,3821,7200,494FR04	K103	US	4	0,190	2,589	9,981	2545	70917	0,279	1,320	0,460
K105US40,2630,96210,0032132849890,3991,6100,423K106aUS40,1991,46510,043536154600,2881,3700,453K106bUS40,2123,06210,026553167560,3031,3400,510K108US40,2322,86310,0261588684700,4311,8200,338K109US40,2322,41510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,2322,92910,0031474487651,6200,3310,480K117US40,2332,21110,0151294416930,3221,4700,502K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2723,59010,0371564611990,3311,7200,473FR041H2O240,2723,59010,0371564611990,3981,6900,516FR043H2O240,2520,99310,0032007814730,4061,7500,473FR043H2O240,2523,05210,0071094417390,3821,7400,364FR0	K104	US	4	0,237	1,941	10,026	1538	51095	0,332	1,750	0,457
K106aUS40,1991,46510,043536154600,2881,3700,453K106bUS40,2123,06210,026553167560,3031,3400,510K108US40,3043,95610,0261588684700,4311,8200,338K109US40,2362,86310,049860297280,3461,8400,420K110US40,2322,41510,0431125360360,3201,3800,502K111US40,2322,92910,0031474487651,6200,3310,480K117US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2912,16710,055717282770,3941,9400,407FR041H2O240,2950,99310,0032007814730,4661,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,3773,01610,026719348820,4851,7400,364F	K105	US	4	0,263	0,962	10,003	2132	84989	0,399	1,610	0,423
K106bUS40,2123,06210,026553167560,3031,3400,510K108US40,3043,95610,0261588684700,4311,8200,338K109US40,2362,86310,049860297280,3461,3800,420K110US40,2322,41510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,3093,68410,0371820776050,7280,4270,374K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,015717282770,3941,9400,470FR039H2O240,2912,16710,055717282770,3941,9400,470FR041H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3073,91610,026719348820,4851,7400,364FR045H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2523,05210,049782260060,3331,4100,504FR045<	K106a	US	4	0,199	1,465	10,043	536	15460	0,288	1,370	0,453
K108US40,3043,95610,0261588684700,4311,8200,338K109US40,2362,86310,049860297280,3461,3800,420K110US40,2871,57510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2112,16710,055717282770,3941,8200,407FR040H2O240,2123,59010,0371564611990,3911,7200,476FR041H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2523,05210,0371094417390,3821,7200,494FR045H2O240,2523,05210,049782260060,3331,4100,504FR046H2O240,2523,05210,049782260060,3331,4100,504 <th< th=""><th>K106b</th><th>US</th><th>4</th><th>0,212</th><th>3,062</th><th>10,026</th><th>553</th><th>16756</th><th>0,303</th><th>1,340</th><th>0,510</th></th<>	K106b	US	4	0,212	3,062	10,026	553	16756	0,303	1,340	0,510
K109US40,2362,86310,049860297280,3461,3800,420K110US40,2871,57510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,3093,68410,0371820776050,2780,4270,374K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2312,16710,055717282770,3941,9400,470FR040H2O240,2723,59010,0371564611990,3911,7200,476FR041H2O240,3051,98710,026719348820,4851,6900,516FR043H2O240,3773,01610,026719348820,4851,7400,364FR044H2O240,2712,05410,0371094417390,3821,7200,494FR045H2O240,2523,05210,049782260060,3331,4100,504FR046H2O240,2523,05210,049782260060,3331,4100,504	K108	US	4	0,304	3,956	10,026	1588	68470	0,431	1,820	0,338
K110US40,2871,57510,0262187932250,4261,8400,424K111US40,2322,41510,0431125360360,3201,3800,502K112US40,3093,68410,0371820776050,2780,4270,374K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H20240,2912,16710,055717282770,3941,9400,470FR040H20240,3100,68010,0491585683730,4311,8200,407FR041H20240,2950,99310,0371564611990,3911,7200,476FR042H20240,3051,98710,02646641854640,3981,6900,516FR043H20240,2712,05410,0371094417390,3821,7400,364FR045H20240,2523,05210,049782260060,3331,4100,504FR045H20240,2523,05210,049782260060,3331,4100,504FR046H20240,2523,05210,049782260060,3331,4100,504 <t< th=""><th>K109</th><th>US</th><th>4</th><th>0,236</th><th>2,863</th><th>10,049</th><th>860</th><th>29728</th><th>0,346</th><th>1,380</th><th>0,420</th></t<>	K109	US	4	0,236	2,863	10,049	860	29728	0,346	1,380	0,420
K111US40,2322,41510,0431125360360,3201,3800,502K112US40,3093,68410,0371820776050,2780,4270,374K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2912,16710,055717282770,3941,9400,470FR040H2O240,3100,68010,0491585683730,4311,8200,407FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,3051,98710,02646641854640,3981,6900,516FR043H2O240,3773,01610,026719348820,4851,7400,364FR044H2O240,2712,05410,0371094417390,3821,7200,494FR045H2O240,2523,05210,049782260060,3331,4100,504FR047H2O240,2523,05210,049782260060,3331,4100,504FR047H2O240,3796,02710,015341155520,4561,8800,361	K110	US	4	0,287	1,575	10,026	2187	93225	0,426	1,840	0,424
K112US40,3093,68410,0371820776050,2780,4270,374K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H20240,2912,16710,055717282770,3941,9400,470FR040H20240,3100,68010,0491585683730,4311,8200,407FR041H20240,2950,99310,0032007814730,4061,7500,473FR042H20240,3051,98710,02646641854640,3981,6900,516FR043H20240,2712,05410,0371094417390,3821,7400,364FR044H20240,2523,05210,0371094417390,3821,7200,494FR045H20240,2523,05210,049782260060,3331,4100,504FR046H20240,2523,05210,049782260060,3331,4100,504FR047H20230,2294,08910,060841251470,2991,2300,543FR047H20240,3796,02710,015341155520,4561,8800,361 </th <th>K111</th> <th>US</th> <th>4</th> <th>0,232</th> <th>2,415</th> <th>10,043</th> <th>1125</th> <th>36036</th> <th>0,320</th> <th>1,380</th> <th>0,502</th>	K111	US	4	0,232	2,415	10,043	1125	36036	0,320	1,380	0,502
K117US40,2322,92910,0031474487651,6200,3310,480K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2912,16710,055717282770,3941,9400,470FR040H2O240,3100,68010,0491585683730,4311,8200,407FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2523,05210,049782260060,3331,4100,504FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467 </th <th>K112</th> <th>US</th> <th>4</th> <th>0,309</th> <th>3,684</th> <th>10,037</th> <th>1820</th> <th>77605</th> <th>0,278</th> <th>0,427</th> <th>0,374</th>	K112	US	4	0,309	3,684	10,037	1820	77605	0,278	0,427	0,374
K118US40,2332,29110,0151294416930,3221,4700,502FR039H2O240,2912,16710,055717282770,3941,9400,470FR040H2O240,3100,68010,0491585683730,4311,8200,407FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2523,05210,049782260060,3331,4100,504FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387<	K117	US	4	0,232	2,929	10,003	1474	48765	1,620	0,331	0,480
FR039H2O240,2912,16710,055717282770,3941,9400,470FR040H2O240,3100,68010,0491585683730,4311,8200,407FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	K118	US	4	0,233	2,291	10,015	1294	41693	0,322	1,470	0,502
FR040H2O240,3100,68010,0491585683730,4311,8200,407FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR039	H2O2	4	0,291	2,167	10,055	717	28277	0,394	1,940	0,470
FR041H2O240,2723,59010,0371564611990,3911,7200,476FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR040	H2O2	4	0,310	0,680	10,049	1585	68373	0,431	1,820	0,407
FR042H2O240,2950,99310,0032007814730,4061,7500,473FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR041	H2O2	4	0,272	3,590	10,037	1564	61199	0,391	1,720	0,476
FR043H2O240,3051,98710,02646641854640,3981,6900,516FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR042	H2O2	4	0,295	0,993	10,003	2007	81473	0,406	1,750	0,473
FR044H2O240,3773,01610,026719348820,4851,7400,364FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR043	H2O2	4	0,305	1,987	10,026	4664	185464	0,398	1,690	0,516
FR045H2O240,2712,05410,0371094417390,3821,7200,494FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR044	H2O2	4	0,377	3,016	10,026	719	34882	0,485	1,740	0,364
FR046H2O240,2523,05210,049782260060,3331,4100,504FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR045	H2O2	4	0,271	2,054	10,037	1094	41739	0,382	1,720	0,494
FR047H2O230,2294,08910,060841251470,2991,2300,543FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR046	H2O2	4	0,252	3,052	10,049	782	26006	0,333	1,410	0,504
FR101H2O240,3796,02710,015341155520,4561,8800,361FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR047	H2O2	3	0,229	4,089	10,060	841	25147	0,299	1,230	0,543
FR102H2O240,2628,67710,03727091580,3391,2800,467FR103H2O240,3556,07210,02611954130,4551,6000,387	FR101	H2O2	4	0,379	6,027	10,015	341	15552	0,456	1,880	0,361
FR103 H2O2 4 0,355 6,072 10,026 119 5413 0,455 1,600 0,387	FR102	H2O2	4	0,262	8,677	10,037	270	9158	0,339	1,280	0,467
	FR103	H2O2	4	0,355	6,072	10,026	119	5413	0,455	1,600	0,387

Anhang: Tabelle IV

			10Å	- Illit -	Peak					
		Meß-	FWHM		Peak-	Peak-	Peak-	Integral-		
Probe	Auf-	werte	(MW)	s1	Lage	Intensität	Fläche	breite	BB1	Esquevin
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$	Index	Index
FR104	H2O2	4	0,447	1,847	10,072	457	26828	0,587	2,200	0,337
FR105	H2O2	4	0,384	4,615	10,060	147	6595	0,449	1,490	0,340
FR106	H2O2	4	0,473	3,957	10,060	432	24296	0,562	1,860	0,370
FR107	H2O2	4	0,412	2,850	10,049	332	17858	0,538	2,190	0,386
FR108	H2O2	4	0,376	1,751	10,037	261	11534	0,442	1,470	0,456
FR109	H2O2	4	0,315	0,093	10,015	183	7332	0,401	1,410	0,404
FR110	H2O2	4	0,278	2,904	10,015	132	4882	0,370	1,630	0,424
FR111	H2O2	4	0,254	1,815	10,015	256	8481	0,331	1,310	0,453
FR112	H2O2	5	0,252	3,386	10,015	822	28339	0,345	1,540	0,462
FR113	H2O2	4	0,277	4,307	10,037	1492	55544	0,372	1,790	0,482
FR114	H2O2	5	0,254	1,365	10,003	322	10326	0,321	1,290	0,466
FR115	H2O2	4	0,309	0,097	10,026	403	17474	0,434	2,350	0,447
FR116	H2O2	4	0,244	2,254	10,015	311	9650	0,310	1,290	0,444
FR117	H2O2	4	0,204	3,532	10,015	824	23344	0,283	1,570	0,578
FR118	H2O2	4	0,228	2,178	10,026	1562	47773	0,306	1,510	0,533
FR119	H2O2	4	0,251	0,952	10,026	924	32011	0,346	1,750	0,491
FR120	H2O2	4	0,298	0,068	10,026	456	18679	0,410	1,810	0,465
FR122	H2O2	4	0,420	3,095	10,060	710	37656	0,530	1,950	0,415
FR123	H2O2	4	0,303	4,459	10,015	415	17435	0,420	1,780	0,441
FR124	H2O2	4	0,447	1,256	10,043	421	24105	0,573	2,030	0,371
FR125	H2O2	4	0,373	0,909	10,026	1057	52620	0,498	2,020	0,435
FR126	H2O2	4	0,379	3,795	10,020	618	32621	0,528	2,040	0,476
FR127	H2O2	4	0,370	4,076	10,049	903	44481	0,493	2,030	0,482
FR128	H2O2	4	0,426	1,910	10,032	659	36703	0,557	2,220	0,443
FR129	H2O2	4	0,344	3,953	10,060	896	40134	0,448	1,660	0,443
FR129a	H2O2	4	0,332	3,112	10,060	717	31311	0,437	1,730	0,428
FR130	H2O2	4	0,496	1,933	10,072	1283	82169	0,640	2,350	0,429
FR131	H2O2	4	0,334	2,199	10,066	1364	59360	0,435	1,830	0,437
FR132-1	H2O2	4	0,337	0,663	10,060	1819	80178	0,441	1,910	0,446
FR132-2	H2O2	4	0,328	2,031	10,037	1750	76133	0,435	1,950	0,417
FR133	H2O2	4	0,517	1,531	10,060	1034	68965	0,667	2,280	0,347
FR134	H2O2	4	0,376	2,757	10,037	586	28875	0,493	1,840	0,439
FR135	H2O2	4	0,337	1,756	10,015	920	41423	0,450	1,890	0,387
FR136	H2O2	4	0,293	2,253	10,026	1230	48422	0,394	1,650	0,477
FR137	H2O2	4	0,340	1,791	10,026	606	26781	0,442	1,730	0,424
FR138	H2O2	4	0,327	1,380	10,037	885	38445	0,434	1,750	0,451
FR139	H2O2	4	0,331	1,003	10,037	1749	81462	0,466	2,270	0,475
FR141	H2O2	4	0,399	0,051	10,037	1011	53045	0,525	2,250	0,424
FR142	H2O2	4	0,325	2,586	10,037	908	40757	0,449	2,010	0,415
FR144	H2O2	4	0,345	5,889	10,015	773	35554	0,460	1,930	0,431
FR145	H2O2	4	0,321	3,805	10,060	699	30354	0,434	1,920	0,464
FR146	H2O2	4	0,313	1,981	10,060	1045	43011	0,412	1,800	0,463
FR147	H2O2	4	0,458	1,729	10,083	1108	62758	0,566	1,970	0,329
FR158	H2O2	4	0,306	3,816	9,992	815	36171	0,444	1,980	0,437
FR159	H2O2	4	0,242	1,471	10,060	886	26737	0,302	1,200	0,555
FR160	H2O2	4	0,245	2,863	10,015	1548	47023	0,304	1,170	0,536
FR161	H2O2	4	0,430	3,286	10,164	181	9361	0,517	1,600	0,238
FR162	H2O2	4	0,288	4,690	10,003	722	26513	0,367	1,400	0,385
FR163	H2O2	4	0,289	2,933	10,049	1047	38196	0,365	1,600	0,459
FR176	H2O2	4	0,348	1,408	10,049	964	43130	0,447	1,920	0,405
FR177	H2O2	4	0,375	1,543	10,015	936	45024	0,481	1,800	0,546
FR178	H2O2	4	0,386	1,076	10,037	727	35321	0,486	1,880	0,413
FR179	H2O2	4	0,345	1,320	10,026	968	41395	0,428	1,560	0,447
FR180	H2O2	4	0,301	0,736	10,026	1324	50657	0,383	1,830	0,560
FR181	H2O2	4	0,271	1,741	10,015	1683	57498	0,342	1,530	0,595
FR182	H2O2	4	0,317	1,246	10,026	654	26623	0,407	1,830	0,526
FR183	H2O2	4	0,299	6,871	10,026	1077	40242	0,374	1,520	0,565
FR184	H2O2	4	0,399	4,073	10,037	281	13442	0,478	1,520	0,466

Anhang: Tabelle IV

			10Å	- Illit -	Peak					
		Meß-	FWHM		Peak-	Peak-	Peak-	Integral-		
Probe	Auf-	werte	(MW)	s1	Lage	Intensität	Fläche	breite	BB1	Esquevin
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$	Index	Index
FR185	H2O2	4	0,407	1,037	10,037	463	24438	0,528	2,000	0,410
FR189	H2O2	4	0,311	1,684	9,992	1038	40407	0,389	1,600	0,526
FR190	H2O2	4	0,396	3,114	10,037	827	43111	0,521	1,830	0,359
FR191	H2O2	4	0,312	1,954	10,015	584	23236	0,398	1,780	0,464
FR192a	H2O2	4	0,302	2,188	10,015	961	37205	0,387	1,880	0,550
FR192b	H2O2	4	0,475	3,219	10,049	685	41680	0,608	2,140	0,407
FR193	H2O2	4	0,490	2,355	10,043	686	40537	0,591	2,050	0,370
FR194	H2O2	4	0,479	2,420	10,026	596	35408	0,594	2,100	0,384
FR195	H2O2	4	0,564	0,963	10,060	994	67128	0,675	2,290	0,323
FR196	H2O2	4	0,400	1,483	9,981	790	41161	0,521	2,070	0,418
FR197	H2O2	4	0,472	4,156	10,060	699	44202	0,632	2,390	0,386
FR193 FR194 FR195 FR196 FR197	H2O2 H2O2 H2O2 H2O2 H2O2 H2O2	4 4 4 4 4	0,490 0,479 0,564 0,400 0,472	2,355 2,420 0,963 1,483 4,156	10,043 10,026 10,060 9,981 10,060	686 596 994 790 699	40537 35408 67128 41161 44202	0,591 0,594 0,675 0,521 0,632	2,050 2,100 2,290 2,070 2,390	0,370 0,384 0,323 0,418 0,386

17

Anhang: Tabelle V

7Å - Chlorit - Peak											
			FWHM		Peak-	Peak-	Peak-	Integral-			
Proben	Auf-	Meßwerte	(MW)	s1	Lage	Intensität	Fläche	Breite			
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$			
K2	US	3	0,294	2,671	7,081	1700	75162	0,442			
K2	H2O2	3	0,298	0,842	7,093	2051	86067	0,420			
K3	NADA	3	0,255	0,000	7,081	1759	52833	0,300			
K3	US	3	0,230	1,004	7,081	1907	60239	0,316			
K3	H2O2	3	0,247	1,089	7,087	1536	56280	0,366			
K5	NADA	3	0,210	1,196	7,070	1401	42702	0,305			
K5	US	3	0,217	0,694	7,070	1580	53167	0,336			
K5	H2O2	3	0,256	3,398	7,070	1207	50191	0,416			
K6	NADA	3	0,255	0,938	7,070	1710	55219	0,323			
K0	05	3	0,217	0,276	7,070	1914	54361	0,284			
K6	H2O2	3	0,228	2,687	7,070	1516	46192	0,305			
K/	NADA	3	0,263	1,379	7,081	987	33153	0,336			
K/	05	0	0,184	1,033	7,070	610	16475	0,270			
		ა ი	0,200	2,900 2,400	7,076	1024	12070	0,295			
K0		3 6	0,194	3,490 2 200	7,070	10//	429/0 12407	0,213			
1.0 1/0	US	0 2	0,201	2,390 2 217	7,005	400	13421	U,201			
K0	1202	Л	0,215	2,341 1 661	7,070	340	42009	0,320			
N9 KO	US 11202	4	0,200	1,001	7,001	340	14417 51017	0,424			
ку к11	H2O2	4 1	0.200	2,100	1,001 7007	1191	2//60	0,420			
K11		4	0,240	2,203	7,007	400	24409	0,520			
K14		3	0,192	0,514	7,070	2756	102005	0,204			
K14	U3 ⊔2O2	3	0,197	1 304	7,005	2666	79735	0,277			
K14		3	0,207	0.071	7,005	1706	50004	0,295			
K17		3	0,207	0,371	7,076	1790	13528	0,325			
K17		3	0,131	1 117	7,076	1837	40055	0,233			
K17		3	0,200	1 802	7,070	1730	46180	0,266			
K17		3	0,107	0.857	7,070	1845	45418	0,200			
K17	VI	3	0,173	1 615	7,070	1935	50435	0.240			
K17	US	3	0.242	1,010	7 076	1453	63111	0.434			
K17	USI	3	0,196	1,000	7 070	1450	38846	0.268			
K17	US ii	3	0.201	1,550	7 070	1471	42161	0.287			
K17	USIII	3	0,209	1 005	7 070	1405	42073	0,299			
K17	US iii	3	0.202	1.040	7.076	1501	45892	0.306			
K17	USIV	3	0.193	0.521	7.070	1498	39331	0.263			
K17	US iv	3	0.202	0.299	7.070	1529	50237	0.329			
K17	US V	3	0,197	1,071	7,070	1361	37707	0,277			
K17	US v	3	0,201	2,000	7,070	1351	43708	0,324			
K17	US VI	3	0,233	1,325	7,076	1266	38350	0,303			
K17	H2O2	3	0,204	1,512	7,076	1447	47386	0,327			
K18	US	3	0,684	1,069	7,087	264	23559	0,892			
K18	H2O2	3	0,852	6,050	7,104	204	20182	0,989			
K19	US	4	0,186	2,541	7,076	661	16999	0,257			
K19	H2O2	4	0,281	6,165	7,076	1206	42383	0,351			
K20	NADA	3	0,201	0,746	7,076	1859	51508	0,277			
K20	US	3	0,195	1,026	7,076	2232	58944	0,264			
K20	H2O2	3	0,224	0,893	7,076	2218	68517	0,309			
K21	NADA	3	0,199	1,150	7,076	1373	43213	0,315			
K21	US	3	0,208	0,288	7,076	1486	47940	0,323			
K21	H2O2	3	0,211	0,474	7,076	1844	55881	0,303			
K22A15	US	4	0,258	1,357	7,081	564	16275	0,289			
K22A15	H2O2	4	0,342	0,979	7,070	720	27304	0,379			
K22-50A	US	4	0,197	3,401	7,087	436	16238	0,372			
K22-50A	H2O2	4	0,315	0,621	7,093	970	42987	0,443			
K23	US	3	0,251	0,598	7,081	442	14491	0,328			
K23	H2O2	3	0,322	2,500	7,093	1423	57546	0,404			
K24	H2O2	3	0,230	0,870	7,076	1584	54902	0,347			
K25	H2O2	4	0,213	3,160	7,076	680	20179	0,297			

Anhang: Tabelle V

			7Å	- Chlorit -	Peak			
			FWHM		Peak-	Peak-	Peak-	Integral-
Proben	Auf-	Meßwerte	(MW)	s1	Lage	Intensität	Fläche	Breite
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
K26	NADA	3	0,196	0,306	7,070	1267	37477	0,296
K26	US	3	0,196	0,612	7,070	1626	47110	0,290
K26	H2O2	3	0,243	1,488	7,065	1533	55249	0,360
K27	NADA	3	0,201	0,498	7,070	1296	39238	0,303
K27	US	3	0,201	1,050	7,076	1708	48519	0,284
K27	H2O2	3	0,193	0,885	7,076	1737	46323	0,428
K28	NADA	3	0,218	2,890	7,104	739	23927	0,324
K28	US	3	0,222	3,130	7,098	785	26926	0,343
K28	H2O2	3	0,255	2,292	7,098	876	38590	0,441
K29	NADA	3	0,183	2,077	7,070	805	20964	0,260
K29	US	3	0,194	2,344	7,070	905	25065	0,277
K29	H2O2	3	0,220	1,636	7,070	1344	47145	0,351
K30	US	3	0,204	3,627	7,076	1267	42763	0,338
K30	H2O2	3	0,277	7,437	7,081	889	31596	0,355
K31	NADA	3	0,189	1,117	7,070	1139	29256	0,257
K31	US	3	0,201	1,000	7,070	1163	34622	0,298
K31	H2O2	3	0,210	0,574	7,076	1187	35031	0,295
K32	H2O2	4	0,212	1,174	7,076	1470	45353	0,309
K33	H2O2	4	0,215	1,185	7,076	2201	66104	0,300
K34	NADA	3	0,225	1,607	7,076	1931	66979	0,347
K34	US	3	0,214	0,708	7,076	2561	85016	0,332
K34	H2O2	3	0,225	1,689	7,076	2209	74491	0,337
K35	H2O2	4	0,219	0,833	7,076	1701	53046	0,312
K36	US	3	0,215	1,461	7,070	972	27392	0,282
K37	NADA	4	0,199	0,657	7,070	1649	47482	0,288
K37	US	3	0,208	2,170	7,070	2136	64665	0,303
K37	H2O2	3	0,233	2,017	7,070	1856	63563	0,342
K39	NADA	4	0,198	0,653	7,076	400	12061	0,302
K41	NADA	4	0,198	2,887	7,070	402	10820	0,269
K42-1	NADA	4	0,191	1,937	7,076	374	9741	0,260
K42-2	NADA	4	0,187	2,353	7,070	319	8204	0,257
K43	NADA	4	0,189	1,158	7,065	291	7591	0,261
K45	NADA	4	0,203	6,485	7,076	141	3913	0,278
K46	NADA	4	0,180	2,022	7,081	625	16675	0,267
K47	NADA	4	0,196	2,589	7,070	612	17419	0,285
K49	NADA	4	0,203	3,216	7,087	1041	29785	0,286
K50	NADA	4	0,203	1,782	7,076	1234	34443	0,279
K51	NADA	4	0,212	2,222	7,076	1110	33304	0,300
K52	NADA	4	0,193	0,895	7,070	1397	38873	0,278
K53	NADA	4	0,190	2,086	7,081	1171	31515	0,269
K54	NADA	4	0,331	2,500	7,093	451	24366	0,540
K55	NADA	3	0,181	4,667	7,070	658	16934	0,257
K56	NADA	4	0,198	2,775	7,076	1194	34521	0,289
K57	US	4	0,280	1,498	7,070	834	29099	0,349
K58-1	US	4	0,262	3,602	7,087	388	13090	0,337
K58-2	US	4	0,258	1,892	7,076	478	15779	0,330
K59	US	4	0,279	1,439	7,081	556	19893	0,358
K60	US	4	0,274	0,627	7,081	830	29156	0,351
K61	US	4	0,263	1,004	7,070	2111	68493	0,324
K62-1	US	4	0,281	1,036	7,081	1479	53849	0,364
K62-2	US	4	0,264	0,778	7,076	1679	54617	0,325
K63	US	4	0,324	1,211	7,070	630	28506	0,452
K64	US	4	0,281	0,657	7,087	750	26789	0,357
K65	US	4	0,304	2,778	7,093	533	23597	0,443
K66	US	4	0,232	1,466	7,070	746	23979	0,321
K67	US	4	0,236	1,064	7,076	1043	35002	0,336
K68	US	4	0,230	3,991	7,076	602	24095	0,400
K69	US	4	0,208	1,250	7,065	953	28038	0,294

Anhang: Tabelle V

7Å - Chlorit - Peak											
			FWHM		Peak-	Peak-	Peak-	Integral-			
Proben	Auf-	Meßwerte	(MW)	s1	Lage	Intensität	Fläche	Breite			
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$			
K70	US	4	0,166	1,677	7,070	922	21853	0,237			
K71	US	4	0,190	1,368	7,072	1160	30954	0,267			
K72	US	4	0,207	3,510	7,076	684	19712	0,288			
K73	US	4	0,235	2,161	7,081	333	10123	0,304			
K74	US	4	0,196	1,480	7,065	910	23901	0,263			
K75	US	4	0,218	3,721	7,076	399	12230	0,307			
K76	US	4	0,222	5,023	7,073	805	25981	0,323			
K77	US	4	0,193	1,146	7,071	1328	36270	0,273			
K78-1	US	4	0,200	1,566	7,072	1475	39507	0,268			
K78-2	US	4	0,197	2,449	7,076	767	20061	0,259			
K79	US	4	0,192	0,890	7,065	1532	39293	0,256			
K80	US	4	0,217	2,617	7,072	527	14924	0,283			
K81	US	4	0,209	2,116	7,076	796	22794	0,286			
K82	US	4	0,192	2,320	7,070	1065	27340	0,257			
K83	US	2	0,197	1,050	7,065	1078	30184	0,280			
K84	US	2	0.215	1.643	7.076	1048	33502	0.320			
K85	US	2	0.203	1.393	7.059	1661	44949	0.271			
K86	US	2	0.197	1,436	7.070	1260	34145	0.271			
K87	US	4	0.332	0.846	7,076	813	38060	0.468			
K88	US	4	0.252	2,016	7,076	984	36102	0.367			
K89	US	4	0,209	1 923	7 076	1407	41232	0.203			
KOU		4	0,203	2 1/6	7,070	717	25007	0,295			
K01		4	0,200	1 705	7,070	740	20007	0,328			
K02		4	0,234	1,735	7,070	673	26881	0,320			
K02		4	0,202	1,270	7,033	1164	20001	0,395			
K93		4	0,200	1,027	7,070	027	254307	0,295			
N34d		4	0,200	1,730	7,070	707	20419	0,304			
K90	05	4	0,160	1,202	7,070	197	45020	0,255			
K90	05	4	0,269	1,324	7,070	1188	45838	0,386			
N97	05	4	0,295	1,267	7,065	000	27707	0,422			
K98	05	4	0,221	0,633	7,070	1154	36099	0,313			
K99	05	4	0,267	2,322	7,076	656	24899	0,380			
K100	US	4	0,218	0,596	7,070	1354	42228	0,312			
K101	05	4	0,200	1,893	7,070	1164	32733	0,281			
K102	05	4	0,203	3,897	7,076	748	20411	0,273			
K103	05	4	0,203	1,558	7,059	1340	38141	0,285			
K104	US	4	0,192	2,642	7,070	1487	39707	0,267			
K105	US	4	0,181	0,276	7,065	2496	61732	0,247			
K106a	US	4	0,168	1,976	7,076	1020	24471	0,240			
K106b	US	4	0,176	1,676	7,070	1112	27704	0,249			
K108	US	4	0,198	3,085	7,070	1535	39665	0,258			
K109	US	4	0,223	1,390	7,076	725	24391	0,336			
K110	US	4	0,182	0,989	7,076	3371	82842	0,246			
K111	US	4	0,217	4,364	7,070	859	27502	0,320			
K112	US	4	0,197	2,020	7,070	794	22053	1,770			
K117	US	4	0,187	2,902	7,059	1470	37958	0,258			
K118	US	4	0,192	2,062	7,065	783	21351	0,273			
FR039	H2O2	4	0,251	1,235	7,076	662	22387	0,338			
FR040	H2O2	4	0,291	0,968	7,081	1950	59935	0,307			
FR041	H2O2	4	0,225	1,067	7,076	2593	78244	0,302			
FR042	H2O2	4	0,248	2,470	7,065	1115	38523	0,345			
FR043	H2O2	4	0,288	1,585	7,070	1801	70216	0,390			
FR044	H2O2	-	-	-	-	-	-	-			
FR045	H2O2	4	0,233	1,781	7,076	1539	50842	0,330			
FR046	H2O2	4	0,260	2,510	7,081	638	20447	0,320			
FR047	H2O2	3	0,256	2,717	7,079	929	32217	0,347			
FR101	H2O2	-	-	-	-	-	-	-			
FR102	H2O2	4	0,283	3,486	7,070	124	4566	0,368			
FR103	H2O2	4	0,475	7,782	7,081	80	4668	0,584			
	•										

Anhang: Tabelle V

7Å - Chlorit - Peak											
			FWHM		Peak-	Peak-	Peak-	Integral-			
Proben	Auf-	Meßwerte	(MW)	s1	Lage	Intensität	Fläche	Breite			
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$			
FR104	H2O2	4	0,276	3,154	7,070	369	14833	0,402			
FR105	H2O2	4	0,275	10,456	7,076	112	4206	0,376			
FR106	H2O2	4	0,293	5,817	7,065	299	11450	0,383			
FR107	H2O2	4	0,336	4,940	7,073	141	6770	0,480			
FR108	H2O2	4	0,318	4,511	7,104	170	5952	0,350			
FR109	H2O2	4	0,331	0,197	7,093	87	3954	0,454			
FR110	H2O2	4	0,244	9,021	7,087	169	5476	0,324			
FR111	H2O2	4	0,232	3,435	7,076	240	7829	0,326			
FR112	H2O2	5	0,237	3,386	7,076	708	21524	0,304			
FR113	H2O2	4	0,285	0,647	7,081	649	22360	0,345			
FR114	H2O2	5	0,230	1,991	7,062	245	7631	0,311			
FR115	H2O2	4	0,275	3,210	7,081	292	10922	0,374			
FR116	H2O2	4	0,229	3,778	7,070	303	9311	0,307			
FR117	H2O2	4	0,202	3,116	7,076	1221	34863	0,286			
FR118	H2O2	4	0,217	1,916	7,070	1002	31799	0,317			
-R119	H2O2	4	0,219	3,211	7,076	645	20457	0,317			
FR120	H2O2	4	0,259	3,735	7,093	467	17854	0,382			
FR122	H2O2	4	0,373	7,216	7,093	393	26748	0,681			
FR123	H2O2	4	0.279	4.176	7.081	411	16750	0.408			
FR124	H2O2	4	0.329	2,783	7.081	1031	46788	0.454			
FR125	H2O2	4	0.311	5 244	7 079	391	19499	0 4 9 9			
FR126	H2O2	4	0.331	2 779	7 087	448	24585	0.549			
FR127	H2O2	4	0.297	5 424	7,007	862	35811	0.415			
ER128	H2O2	4	0.316	0.675	7 093	646	28317	0.438			
ED120	H2O2	4	0,010	6,673	7 081	283	20017	0,400			
ED1202	H2O2	4	0,410	7 029	7 08/	200	15617	0,640			
ED120	H2O2	4	0,350	2 342	7,004	1057	10017	0,040			
ED121	H2O2	4	0,330	2,342	7,001	037	24201	0,400			
-RIJI -D422.4	H2O2	4	0,207	4,240	7,007	024	2002	0,417			
-132-1	H2O2	4	0,343	0,000	7,090	02	3092	0,475			
-132-2	H2O2	4	0,305	21,795	7,001	76	3097	0,400			
-R133	H2O2	4	0,302	1,258	7,076	845	36106	0,427			
-R134	H2O2	4	0,372	4,946	7,087	442	25468	0,576			
-R135	H2O2	4	0,341	5,131	7,076	305	16076	0,527			
-R136	H2O2	4	0,317	3,236	7,076	498	21479	0,431			
FR137	H2O2	4	0,313	2,596	7,084	496	22228	0,448			
FR138	H2O2	4	0,293	2,799	7,087	1028	46463	0,452			
FR139	H2O2	4	0,267	0,037	7,079	665	23378	0,352			
FR141	H2O2	4	0,284	0,070	7,084	670	24519	0,366			
FR142	H2O2	4	0,277	0,899	7,076	558	20185	0,362			
FR144	H2O2	4	0,287	2,545	7,076	417	17650	0,423			
FR145	H2O2	4	0,313	6,026	7,096	219	10533	0,457			
FR146	H2O2	4	0,413	5,149	7,073	219	11037	0,504			
FR147	H2O2	4	0,262	2,346	7,076	752	27654	0,368			
FR158	H2O2	4	0,238	3,403	7,065	946	29912	0,316			
FR159	H2O2	4	0,249	1,423	7,081	1149	43288	0,377			
FR160	H2O2	4	0,353	3,718	7,062	653	35715	0,547			
FR161	H2O2	4	0,309	5,526	7,098	247	10874	0,440			
FR162	H2O2	4	0,405	8,416	7,059	192	12778	0,666			
FR163	H2O2	4	0,303	3,878	7,070	846	39021	0,461			
R176	H2O2	4	0,290	0,448	7,070	763	29092	0,381			
FR177	H2O2	4	0,351	3,761	7,081	645	27966	0,434			
FR178	H2O2	4	0,338	1,269	7,076	483	21343	0,442			
FR179	H2O2	4	0,338	2,636	7,081	294	13577	0,462			
FR180	H2O2	4	0,279	1,769	7,076	853	31481	0,369			
FR181	H2O2	4	0,291	1,615	7,070	508	20201	0,398			
FR182	H2O2	4	0,314	4,662	7,065	469	20882	0,445			
FR183	H2O2	4	0,291	8,050	7,070	615	24387	0,397			
FR184	H2O2	4	0.385	2,291	7,076	400	20237	0.506			
· · · • •		•	-,000	_,	.,			2,000			

Anhang: Tabelle V

7Å - Chlorit - Peak												
			FWHM		Peak-	Peak-	Peak-	Integral-				
Proben	Auf-	Meßwerte	(MW)	s1	Lage	Intensität	Fläche	Breite				
Nummer	bereitung	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$				
FR185	H2O2	4	0,462	3,407	7,070	174	10771	0,619				
FR189	H2O2	4	0,332	4,013	7,059	499	23849	0,478				
FR190	H2O2	4	0,298	1,338	7,081	428	16312	0,381				
FR191	H2O2	4	0,331	1,358	7,059	397	19544	0,492				
FR192a	H2O2	4	0,325	2,848	7,062	400	14560	0,364				
FR192b	H2O2	4	0,530	4,066	7,084	259	14922	0,576				
FR193	H2O2	4	0,447	1,945	7,070	290	13863	0,478				
FR194	H2O2	4	0,345	2,269	7,081	335	14911	0,445				
FR195	H2O2	4	0,358	1,691	7,087	608	28625	0,471				
FR196	H2O2	4	0,365	2,563	7,053	446	24772	0,555				
FR197	H2O2	4	0,556	3,504	7,067	235	12692	0,540				

Anhang: Tabelle VI

			14Å	- Chlorit -	Peak			
Proben	Art der	Meß-	FWHM		Peak-	Peak-	Peak-	Integral-
Nummer	ufbereitung	werte	(MW)	s1	Lage	Intensität	Fläche	Breite
		n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
K2	US	3	0,343	4,783	14,165	423	18535	0,403
K2	H2O2	3	0,360	1,690	14,210	451	21538	0,478
K3	NADA	3	0,249	6,397	14,187	331	11146	0,337
K3	US	3	0,253	12,040	14,165	329	11446	0,305
K3	H2O2	3	0,293	6,136	14,210	257	9445	0,368
K5	NADA	3	0,227	5,336	14,165	286	8972	0,314
K5	US	3	0,227	6,391	14,142	324	10101	0,312
K5	H2O2	3	0,270	7,941	14,165	230	8084	0,351
K6	NADA	3	0,237	7,490	14,187	285	9003	0,316
K6	US	3	0,236	6,391	14,165	360	11284	0,313
K6	H2O2	3	0,249	7,941	14,142	258	8282	0,321
K7	NADA	3	0,284	5,694	14,187	168	5929	0,353
K7	US	6	0,195	5,544	14,165	123	3447	0,280
K7	H2O2	3	0,249	8,293	14,165	197	6680	0,339
K8	NADA	3	0,201	2,551	14,165	380	10662	0,281
K8	US	6	0,217	6,049	14,097	111	3407	0,307
K8	H2O2	3	0,234	3,219	14,142	291	9449	0,325
K9	US	4	0,284	5,799	14,142	113	4858	0,430
K9	H2O2	4	0,319	4,479	14,119	437	20812	0,476
K11	H2O2	4	0,239	4,632	14,210	82	2632	0,321
K14	NADA	3	0,204	1,569	14,142	580	16739	0,289
K14	05	3	0,209	3,062	14,142	607	17752	0,292
K14	H2O2	3	0,241	3,850	14,142	401	13317	0,332
K17		ა ი	0,214	0,700	14,100	340	9932	0,200
K17		ა 2	0,200	2,007	14,100	330	9430	0,279
K17		2	0,210	1,000	14,107	339	9043	0,290
K17		3	0,194	2 406	14,142	360	9609	0,209
K17		3	0,100	2,400 5 231	14,142	360	9009	0,200
K17	US	3	0,135	2 099	14,103	254	8400	0,270
K17	USII	3	0,209	2,000	14 142	300	9569	0,319
K17	US ii	3	0.213	4,076	14,165	281	8362	0,298
K17	USIII	3	0.255	1,786	14,142	280	8627	0.308
K17	US iii	3	0.216	5.708	14,165	283	8379	0.296
K17	US IV	3	0,215	6,359	14,165	290	9125	0,315
K17	US iv	3	0,228	5,263	14,142	278	8627	0,310
K17	US V	3	0,205	2,537	14,165	278	8181	0,294
K17	US v	3	0,213	4,764	14,187	271	7985	0,295
K17	US VI	3	0,245	8,193	14,165	250	8244	0,330
K17	H2O2	3	0,216	1,488	14,165	299	9009	0,301
K18	US	3	0,389	5,782	14,210	131	7152	0,546
K18	H2O2	3	0,485	31,287	14,256	94	6329	0,673
K19	US	4	0,211	0,922	14,142	166	5795	0,349
K19	H2O2	4	0,349	0,296	14,142	292	14804	0,507
K20	NADA	3	0,227	4,690	14,165	359	11434	0,318
K20	US	3	0,208	0,478	14,165	393	12031	0,306
K20	H2O2	3	0,273	2,028	14,187	401	14454	0,360
K21	NADA	3	0,228	2,423	14,187	244	7881	0,323
K21	05	3	0,219	2,227	14,142	267	8000	0,300
N21	H2U2	3 1	0,234	4,770	14,187	319	9740	0,306
RZZA15	00	4	0,280	4,380	14,100	114	3309	0,290
NZZA13		4	0,385	0,402 2,602	14,119	70	4/9/ 2025	0,393
r\22-3UA K22_50A	US H2O2	4 1	0,224	3,002 8 215	14,233	10	2022	0,309
NZZ-3UA K23		4 2	0,343	0,240 0 0/1	14,210 17 110	100	1601	0,439
r.23 K23	H2O2	ა ვ	0,201	3 011	14,119	202	4091 12727	0,434
K24	H2O2	3	0,333	5 579	14 165	297	9173	0,400
K25	H2O2	4	0.272	0 711	14 165	124	3926	0 317
	11202	-1	0,201	0,111	14,100	127	0020	0,017

Anhang: Tabelle VI

			14Å	- Chlorit -	Peak			
Proben	Art der	Meß-	FWHM		Peak-	Peak-	Peak-	Integral-
Nummer	ufbereitung	werte	(MW)	s1	Lage	Intensität	Fläche	Breite
	_	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
K26	NADA	3	0,205	2,315	14,142	226	6210	0,275
K26	US	3	0,207	1,298	14,142	325	9188	0,283
K26	H2O2	3	0,269	1,498	14,142	278	9958	0,358
K27	NADA	3	0,198	6,382	14,142	258	7331	0,284
K27	US	3	0,215	8,295	14,142	330	9874	0,299
K27	H2O2	3	0,201	4,208	14,165	353	9783	0,262
K28	NADA	3	0,208	0,574	14,210	379	11271	0,297
K28	US	3	0,232	0,426	14,210	413	12745	0,309
K28	H2O2	3	0,251	2,097	14,210	393	12645	0,322
K29	NADA	3	0,206	10,383	14,142	156	4679	0,300
K29	US	3	0,211	2,039	14,187	169	5083	0,301
K29	H2O2	3	0,250	5,890	14,142	227	7542	0,332
K30	US	3	0,227	4,130	14,165	328	10358	0,316
K30	H2O2	3	0,328	0,400	14,165	212	9084	0,428
K31	NADA	3	0,205	2,970	14,165	216	6162	0,285
K31	US	3	0,255	4,636	14,165	205	6148	0,300
K31	H2O2	3	0,247	10,287	14,142	211	6661	0,316
K32	H2O2	4	0,229	0,346	14,165	310	9760	0,315
K33	H2O2	4	0,242	2,101	14,165	419	13315	0,318
K34	NADA	3	0,237	7,185	14,165	402	13027	0,324
K34	US	3	0,227	0,942	14,142	535	17443	0,326
K34	H2O2	3	0,247	5,738	14,142	435	14869	0,342
K35	H2O2	4	0,255	5,534	14,165	325	11247	0,346
K36	US	3	0,254	7,570	14,142	210	7165	0,341
K37	NADA	4	0,215	1,557	14,142	301	8684	0,289
K37	US	3	0,216	3,182	14,142	375	10876	0,290
K37	H2O2	3	0,244	1,829	14,165	290	9258	0,319
K39	NADA	4	0,198	8,128	14,165	73	2234	0,306
K41	NADA	4	0,227	11,911	14,187	78	2421	0,310
K42-1	NADA	4	0,216	4,818	14,142	71	2100	0,296
K42-2	NADA	4	0,236	12,424	14,142	62	1910	0,308
K43	NADA	4	0,216	0,137	14,165	59	1659	0,281
K45	NADA	4	0,282	24,049	14,165	27	1188	0,440
K46	NADA	4	0,190	14,764	14,210	119	3269	0,275
K47	NADA	4	0,210	9,814	14,165	104	3021	0,290
K49	NADA	4	0,234	3,680	14,210	189	6065	0,321
K50	NADA	4	0,232	5,696	14,165	176	5574	0,317
K51	NADA	4	0,235	0,091	14,210	205	6702	0,327
K52	NADA	4	0,216	3,879	14,119	292	8608	0,295
K53	NADA	4	0,213	1,972	14,187	263	7466	0,284
K54	NADA	4	0,408	9,075	14,233	174	9616	0,553
K55	NADA	3	0,202	6,345	14,142	132	3884	0,294
K56	NADA	4	0,217	6,651	14,165	286	8728	0,305
K57	US	4	0,320	2,949	14,119	159	6167	0,388
K58-1	US	4	0,316	0,157	14,165	77	2718	0,353
K58-2	US	4	0,285	0,365	14,187	88	3163	0,359
K59	US	4	0,313	7,089	14,210	110	3934	0,358
K60	US	4	0,285	11,875	14,233	142	4908	0,346
K61	US	4	0,285	3,380	14,165	322	11173	0,347
K62-1	US	4	0,308	4,513	14,187	242	9067	0,375
K62-2	US	4	0,283	1,345	14,187	274	9831	0,359
K63	US	4	0,358	3,247	14,142	219	9608	0,439
K64	US	4	0,307	8,502	14,187	131	4674	0,357
K65	US	4	0,306	2,079	14,187	433	17168	0,396
K66	US	4	0,261	8,045	14,142	144	4930	0,342
K67	US	4	0,262	6,207	14,142	210	7312	0,348
K68	US	4	0,287	7,238	14,119	143	6409	0,448
K69	US	4	0,254	7,500	14,142	166	5507	0,332

Anhang: Tabelle VI

			14Å	- Chlorit -	Peak			
Proben	Art der	Meß-	FWHM		Peak-	Peak-	Peak-	Integral-
Nummer	ufbereitun <u>g</u>	werte	(MW)	s1	Lage	Intensität	Fläche	Breite
	_	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
K70	US	4	0,183	4,317	14,165	176	4229	0,393
K71	US	4	0,197	6,834	14,142	249	6713	0,270
K72	US	4	0,219	66,818	14,165	150	4326	0,288
K73	US	4	0,296	3,458	14,187	92	3429	0,373
K74	US	4	0,203	7,972	14,119	178	4631	0,260
K75	US	4	0,223	15,783	14,165	91	2575	0,283
K76	US	4	0,242	4,500	14,142	201	6423	0,320
K77	US	4	0,230	4,956	14,142	290	9063	0,313
K78-1	US	4	0,227	5,789	14,142	276	8054	0,292
K78-2	US	4	0,218	7,014	14,165	148	3985	0,269
K79	US	4	0,217	1,168	14,119	275	7990	0,291
K80	US	4	0,251	8,596	14,142	104	3797	0,365
K81	US	4	0,203	4,080	14,176	151	4755	0,315
K82	US	4	0,205	3,971	14,142	224	6182	0,276
K83	US	2	0,210	0,625	14,142	214	6181	0,289
K84	US	2	0,226	0,921	14,165	272	8515	0,313
K85	US	2	0,216	2,273	14,097	326	9760	0,299
K86	US	2	0,213	7,723	14,119	283	8571	0,303
K87	US	4	0,313	6,019	14,119	303	12741	0,420
K88	US	4	0,270	4,416	14,119	253	9045	0,358
K89	US	4	0,226	4,826	14,142	261	8058	0,309
K90	US	4	0,303	3,726	14,142	218	8976	0,412
K91	US	4	0,286	8,712	14,153	231	9242	0,400
K92	US	4	0,307	1,010	14,097	251	10856	0,433
K93	US	4	0,249	3,455	14,165	256	8560	0,334
K94a	US	4	0.231	2.143	14,142	192	5993	0.312
K95	US	4	0.221	7.500	14,142	172	5263	0.306
K96	US	4	0.397	2.744	14.142	269	12961	0.482
K97	US	4	0.370	4.802	14.142	218	11643	0.534
K98	US	4	0.260	1.712	14.142	241	8811	1,110
K99	US	4	0.356	7.994	14.187	194	9683	0.499
K100	US	4	0.249	0.398	14.131	264	9096	0.345
K101	US	4	0.223	3.911	14,119	253	8179	0.323
K102	US	4	0.231	4.504	14.187	127	3657	0.288
K103	US	4	0.197	3.122	14.097	240	6896	0.287
K104	US	4	0.203	6.099	14,165	268	7839	0.292
K105	US	4	0,198	1,450	14,119	440	12508	0.284
K106a	US	4	0,191	4,697	14,165	228	6649	0.292
K106b	US	4	0,196	0.859	14 119	233	6855	0 294
K108	US	4	0,208	6,000	14 131	334	9464	0.283
K109	US	4	0,276	4 424	14 165	162	6649	0,410
K110	US	4	0,206	1 635	14 165	529	14973	0.283
K111	US	4	0.272	3,620	14,131	249	9736	0.391
K112	US	4	0.247	7,175	14,119	134	4146	0.309
K117	US	4	0,206	5 945	14 097	267	7471	0,280
K118		4	0,200	5,040 5,107	14,007	153	4755	0,200
FR039	H2O2	4	0,240	7 657	14,113	131	4291	0 328
FR040	H2O2	4	0,200	3 198	14,187	259	8392	0 324
FR041	H2O2	4	0.252	3 346	14 165	409	13499	0,330
FR042	H2O2	4	0.273	4 818	14 119	170	5742	0,338
FR043	H2O2	 4	0 320	3 563	14 086	334	13304	0,000
FR044	H2O2	-	0,020	-		-		-
FR045	H2O2	-	0.265	- 202 8	-	- 251	-	-
FR046	H2O2		0,200	0,000 0 172	14,107	200	8387	0,331
EP047	H2O2	т 3	0,200	2,412	14 110	209	11256	0,401
ED101	H2O2	5	-	2,000	-	2 4 3	-	
ED102	H2O2	-	0.410	-	-	-	-	-
FR 102		4	0,410	16,471	14,210	ZI 40	120/	0,400
FK103	H202	4	0,495	16,139	14,142	42	2460	0,586

Anhang: Tabelle VI

			14Å	- Chlorit -	Peak			
Proben	Art der	Meß-	FWHM		Peak-	Peak-	Peak-	Integral-
Nummer	ufbereitung	werte	(MW)	s1	Lage	Intensität	Fläche	Breite
	Ŭ	n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
FR104	H2O2	4	0,337	6,106	14,233	33	1329	0,403
FR105	H2O2	4	0.380	30.712	14.233	15	448	0.299
FR106	H2O2	4	0.363	9.511	14.074	35	1322	0.378
FR107	H2O2	4	0.445	3.624	14,142	30	1501	0.500
FR108	H2O2	4	0.322	13.832	14.256	29	994	0.343
FR109	H2O2	4	0.320	29.483	14,119	18	610	0.339
FR110	H2O2	4	0.262	39.939	14.210	31	1241	0.400
FR111	H2O2	4	0.270	7.626	14,165	47	1921	0.409
FR112	H2O2	5	0.305	9,134	14,131	145	5500	0.379
FR113	H2O2	4	0.326	2.597	14,176	176	7858	0.446
FR114	H2O2	5	0.272	5.589	14.097	44	1588	0.361
FR115	H2O2	4	0.309	16.925	14.074	38	1489	0.392
FR116	H2O2	4	0.256	4.667	14,142	70	2463	0.352
FR117	H2O2	4	0.233	6,933	14,153	211	6957	0.330
FR118	H2O2	4	0.244	4,618	14,142	190	6458	0.340
FR119	H2O2	4	0.267	5,704	14,187	104	3632	0.349
FR120	H2O2	4	0.350	4,585	14,187	129	5554	0.431
FR122	H2O2	4	0 437	8,352	14 187	81	5126	0,633
FR123	H2O2	4	0.301	6.388	14,165	104	4494	0.432
FR124	H2O2	4	0.382	5 591	14 176	182	8891	0.489
FR125	H2O2	4	0,380	1,516	14 165	106	5171	0 488
FR126	H2O2	4	0,400	13 200	14 153	90	5122	0,569
FR127	H2O2	4	0.349	14 241	14 165	95	4169	0 439
FR128	H2O2	4	0.343	6.351	14,233	108	4665	0,432
FR129	H2O2	4	0.367	7,102	14,176	85	4323	0.509
FR129a	H2O2	4	0 427	20.071	14 142	77	4076	0,529
FR130	H2O2	4	0.443	7.226	14,119	126	6640	0.527
FR131	H2O2	4	0.326	12,239	14,187	113	5128	0.454
FR132-1	H2O2	-	-	-	-	-	-	-
FR32-2	H2O2	-	-	-	-	-	-	-
FR133	H2O2	4	0.346	5.826	14,119	123	5178	0.421
FR 134	H2O2	4	0.448	4.802	14,108	105	6017	0.573
FR135	H2O2	4	0.400	4.941	14.086	81	4197	0.518
FR136	H2O2	4	0.352	9,686	14,119	168	7784	0,463
FR137	H2O2	4	0.350	2,911	14,165	223	9896	0,444
FR138	H2O2	4	0,354	2,401	14,199	206	9878	0,480
FR139	H2O2	4	0,301	3,223	14,165	195	7178	0,368
FR141	H2O2	4	0,352	16,783	14,074	104	4934	0,474
FR142	H2O2	4	0,358	12,931	14,097	94	3838	0,408
FR144	H2O2	4	0,338	11,124	14,142	83	3561	0,429
FR145	H2O2	4	0,480	48,884	14,119	45	2659	0,591
FR146	H2O2	4	0,417	12,475	14,074	112	5297	0,473
FR147	H2O2	4	0,322	6,647	14,165	116	4543	0,392
FR158	H2O2	4	0,275	2,630	14,119	163	5688	0,349
FR159	H2O2	4	0,277	2,198	14,176	241	9876	0,410
FR160	H2O2	4	0,622	1,954	13,952	297	24765	0,834
FR161	H2O2	4	0,370	21,391	14,325	29	1232	0,425
FR162	H2O2	4	0,339	11,949	14,008	113	5032	0,445
FR163	H2O2	4	0,350	2,845	14,142	192	9227	0,481
FR176	H2O2	4	0,372	4,472	14,097	112	5556	0,496
FR177	H2O2	4	0,414	5,802	14,165	139	7276	0,523
FR178	H2O2	4	0,379	6,929	14,153	133	6028	0,453
FR179	H2O2	4	0,385	3,924	14,165	59	3845	0,652
FR180	H2O2	4	0,337	7,976	14,176	149	6107	0,410
FR181	H2O2	4	0,307	4,248	14,097	97	3398	0,350
FR182	H2O2	4	0,344	4,302	14,119	108	4653	0,431
FR183	H2O2	4	0,347	10,669	14,119	98	4105	0,419
FR184	H2O2	4	0,441	8,637	14,153	123	6654	0,541

Anhang: Tabelle VI

			14Å	- Chlorit -	Peak			
Proben	Art der	Meß-	FWHM		Peak-	Peak-	Peak-	Integral-
Nummer	ufbereitung	werte	(MW)	s1	Lage	Intensität	Fläche	Breite
		n	$\Delta^{\circ}2\Theta$	%	Å	Counts	Counts	$\Delta^{\circ}2\Theta$
FR185	H2O2	4	0,444	10,205	14,030	111	6345	0,572
FR189	H2O2	4	0,332	9,045	14,074	130	5535	0,426
FR190	H2O2	4	0,337	6,628	14,142	103	4718	0,458
FR191	H2O2	4	0,342	4,841	14,097	114	4887	0,429
FR192a	H2O2	4	0,350	4,792	14,108	98	4262	0,435
FR192b	H2O2	4	0,520	16,552	14,052	51	3058	0,600
FR193	H2O2	4	0,502	9,684	14,074	110	6784	0,617
FR194	H2O2	4	0,330	6,982	14,119	67	2733	0,408
FR195	H2O2	4	0,390	5,564	14,244	107	5049	0,472
FR196	H2O2	4	0,440	5,882	13,974	138	7391	0,536
FR197	H2O2	4	0,630	11,346	14,097	49	3230	0,659

Anhang: Tabelle VII

		Rm %				5Å - Illit	- Peak	4.26Å - Q	z - Peak
Proben	Rm (%)		Meß-	Auf-	Meß-	Peak-	Peak-	Peak-	Peak-
Nummer	Rm	s2	Punkte	bereitung	werte	Lage	Intensität	Lage	Intensität
	%	%	n		n	Å	Counts	Å	Counts
K2	-	-	-	US	3	5,000	622	4,261	164
K2	-	-	-	H2O2	3	5,000	817	4,261	161
К3	-	-	-	NADA	3	4,997	918	4,261	266
K3	-	-	-	US	3	5,000	961	4,261	205
K3	-	-	-	H2O2	3	5,000	1010	4,261	188
K5	-	-	-	NADA	3	5,005	929	4,261	254
К5	-	-	-	US	3	5,005	1015	4,261	209
К5	-	-	-	H2O2	3	5,003	1006	4,261	165
K6	-	-	-	NADA	3	5,003	1067	4,261	226
K6	-	-	-	US	3	5,005	1265	4,261	187
K6	-	-	-	H2O2	3	5,005	1169	4,261	161
K7	-	-	-	NADA	3	5,005	477	4,265	250
K7	-	-	-	US	6	5,008	331	4,261	98
K7	-	-	-	H2O2	3	5,005	647	4,261	153
K8	-	-	-	NADA	3	5,005	795	4,261	234
K8	-	-	-	US	6	5,003	271	4,261	70
K8	-	-	-	H2O2	3	5,005	767	4,261	171
K9	-	-	-	US	4	5,019	194	4,263	102
K9	-	-	-	H2O2	4	5,017	626	4,263	141
K11	-	-	-	H2O2	4	5,017	223	4,261	46
K14	-	-	-	NADA	3	5,011	495	4,261	366
K14	-	-	-	US	3	5,008	569	4,261	399
K14	-	-	-	H2O2	3	5,008	639	4,261	167
K17	-	-	-	NADA	3	5,008	526	4,261	614
K17	-	-	-	NADA II	3	5,008	519	4,261	606
K17	-	-	-	NADA III	3	5,008	581	4,261	661
K17	-	-	-	NADA IV	3	5,008	524	4,261	654
K17	-	-	-	NADA V	3	5,008	539	4,261	656
K17	-	-	-	NADA VI	3	5,008	579	4,261	687
K17	-	-	-	US	3	5,008	567	4,261	470
K17	-	-	-	US II	3	5,008	551	4,261	492
K17	-	-	-	US ii	3	5,008	584	4,261	541
K17	-	-	-	US III	3	5,005	538	4,261	485
K17	-	-	-	US iii	3	5,008	586	4,261	511
K17	-	-	-	US IV	3	5,005	569	4,261	489
K17	-	-	-	US iv	3	5,008	579	4,261	531
K17	-	-	-	US V	3	5,005	527	4,261	490
K17	-	-	-	US v	3	5,005	514	4,261	468
K17	-	-	-	US VI	3	5,011	529	4,261	461
K17	-	-	-	H2O2	3	5,011	551	4,261	480
K18	-	-	-	US	3	5,008	988	4,261	346
K18	-	-	-	H2O2	3	5,008	869	4,261	301
K19	-	-	-	US	4	5,017	354	4,263	85
K19	-	-	-	H2O2	4	5,017	774	4,261	105
K20	-	-	-	NADA	3	5,005	696	4,261	454
K20	-	-	-	US	3	5,005	833	4,261	455
K20	-	-	-	H2O2	3	5,003	1130	4,261	311
K21	-	-	-	NADA	3	5,003	301	4,261	513
K21	-	-	-	US	3	5,000	402	4,261	476
K21	-	-	-	H2O2	3	5,003	478	4,261	340
K22A15	-	-	-	US	4	5,011	349	4,261	61
K22A15	-	-	-	H2O2	4	5,003	628	4,261	66
K22-50A	-	-	-	US	4	5,000	229	4,261	67

Anhang: Tabelle VII

		Rm %				5Å - Illit	t - Peak	4.26Å - Qz	- Peak
Proben	Rm (%)		Meß-	Auf-	Meß-	Peak-	Peak-	Peak-	Peak-
Nummer	Rm	s2	Punkte	bereitung	werte	Lage	Intensität	Lage	Intensität
	%	%	n		n	Å	Counts	Å	Counts
K22-50A	-	-	-	H2O2	4	4,997	641	4,261	91
K23	-	-	-	US	3	4,997	117	4,261	62
K23	-	-	-	H2O2	3	4,989	416	4,261	91
K24	-	-	-	H2O2	3	5,011	892	4,261	465
K25	-	-	-	H2O2	4	5,008	857	4,261	137
K26	-	-	-	NADA	3	5,005	657	4,261	340
K26	-	-	-	US	3	5,005	840	4,261	245
K26	-	-	-	H2O2	3	5,003	1028	4,261	201
K27	-	-	-	NADA	3	5,000	520	4,261	362
K27	-	-	-	US	3	5,000	814	4,261	337
K27	-	-	-	H2O2	3	5,000	658	4,261	449
K28	-	-	-	NADA	3	5,003	936	4,261	298
K28	-	-	-	US	3	5,005	1031	4,261	277
K28	-	-	-	H2O2	3	5,005	1322	4,261	177
K29	-	-	-	NADA	3	5,005	617	4,261	419
K29	-	-	-	US	3	5,005	787	4,261	392
K29	-	-	-	H2O2	3	5,005	742	4,261	282
K30	-	-	-	US	3	5,011	524	4,261	408
K30	-	-	-	H2O2	3	5,014	695	4,261	179
K31	-	-	-	NADA	3	5,003	890	4,261	404
K31	-	-	-	US	3	5,003	776	4,261	386
K31	-	-	-	H2O2	3	5,003	833	4,261	224
K32	-	-	-	H2O2	4	5,003	784	4,261	129
K33	-	-	-	H2O2	4	5,008	1471	4,263	62
K34	-	-	-	NADA	3	5,005	853	4,261	276
K34	-	-	-	US	3	5,005	1031	4,261	241
K34	-	-	-	H2O2	3	5,011	958	4,261	204
K35	-	-	-	H2O2	4	5,008	933	4,263	94
K36	-	-	-	US	3	5,003	961	4,261	173
K37	-	-	-	NADA	4	5,005	1045	4,261	239
K37	-	-	-	US	3	5,003	1429	4,261	213
K37	-	-	-	H2O2	3	5,005	1639	4,261	175
K39	-	-	-	NADA	4	5,003	180	4,261	270
K41	-	-	-	NADA	4	5,005	176	4,261	157
K42-1	-	-	-	NADA	4	5,014	138	4,261	178
K42-2	-	-	-	NADA	4	5,008	113	4,261	149
K43	-	-	-	NADA	4	5,011	128	4,261	147
K45	-	-	-	NADA	4	5,005	65	4,261	107
K46	-	-	-	NADA	4	5,014	246	4,265	349
K47	-	-	-	NADA	4	5,005	682	4,263	155
K49	-	-	-	NADA	4	5,005	340	4,263	217
K50	-	-	-	NADA	4	5,011	587	4,265	277
K51	-	-	-	NADA	4	5,005	475	4,261	221
K52	-	-	-	NADA	4	5,003	815	4,261	128
K53	-	-	-	NADA	4	5,008	383	4,263	211
K54	-	-	-	NADA	4	5,003	318	4,263	304
K55	-	-	-	NADA	3	5,008	217	4,261	675
K56	-	-	-	NADA	4	5,011	411	4,263	408
K57	-	-	-	US	4	5,008	364	4,261	242
K58-1	-	-	-	US	4	5,014	311	4,261	222
K58-2	-	-	-	US	4	5,011	197	4,263	290
K59	-	-	-	US	4	5,014	367	4,261	97
K60	-	-	-	US	4	5,011	620	4,265	148

Anhang: Tabelle VII

		Rm %				5Å - Illit	t - Peak	4.26Å - Qz	- Peak
Proben	Rm (%)		Meß-	Auf-	Meß-	Peak-	Peak-	Peak-	Peak-
Nummer	Rm	s2	Punkte	bereitung	werte	Lage	Intensität	Lage	Intensität
	%	%	n		n	Å	Counts	Å	Counts
K61	-	-	-	US	4	5,014	579	4,261	105
K62-1	-	-	-	US	4	5,014	432	4,267	229
K62-2	-	-	-	US	4	5,017	331	4,263	148
K63	-	-	-	US	4	5,014	486	4,261	112
K64	-	-	-	US	4	5,017	545	4,267	150
K65	-	-	-	US	4	5,028	784	4,265	139
K66	-	-	-	US	4	5,005	692	4,261	113
K67	-	-	-	US	4	5,011	720	4,261	113
K68	-	-	-	US	4	5,005	845	4,261	120
K69	-	-	-	US	4	5,003	916	4,261	142
K70	-	-	-	US	4	5,008	286	4,261	528
K71	-	-	-	US	4	5,011	545	4,261	298
K72	-	-	-	US	4	5,011	664	4,261	228
K73	-	-	-	US	4	5,008	786	4,261	97
K74	-	-	-	US	4	5,003	804	4,261	121
K75	-	-	-	US	4	5,005	539	4,261	134
K76	-	-	-	US	4	5,003	545	4,261	122
K77	-	-	-	US	4	5,005	602	4,261	138
K78-1	-	-	-	US	4	5,003	871	4,261	109
K78-2	-	-	-	US	4	5,008	883	4,261	134
K79	-	-	-	US	4	5,005	1364	4,261	116
K80	-	-	-	US	4	5,005	956	4,261	103
K81	-	-	-	US	4	5,007	720	4,264	120
K82	-	-	-	US	4	5,005	903	4,261	125
K83	-	-	-	US	2	5,003	797	4,261	127
K84	-	-	-	US	2	5,008	544	4,261	218
K85	-	-	-	US	2	5,000	1005	4,259	97
K86	-	-	-	US	2	5,004	566	4,261	189
K87	-	-	-	US	4	5,005	999	4,261	105
K88	-	-	-	US	4	5,003	570	4,261	105
K89	-	-	-	US	4	5,000	175	4,261	152
K90	-	-	-	US	4	5,005	575	4,261	131
K91	-	-	-	US	4	5,008	718	4,263	141
K92	-	-	-	US	4	5,000	723	4,259	115
K93	-	-	-	US	4	5,008	519	4,261	139
K94a	-	-	-	US	4	5,005	834	4,260	99
K95	-	-	-	US	4	5,014	186	4,261	443
K96	-	-	-	US	4	5,008	370	4,260	170
K97	-	-	-	US	4	5,000	682	4,256	117
K98	-	-	-	US	4	5,005	828	4,262	124
K99	-	-	-	US	4	5,011	504	4,262	129
K100	-	-	-	US	4	5,008	543	4,261	157
K101	-	-	-	US	4	5,003	717	4,261	153
K102	-	-	-	US	4	5,008	811	4,263	130
K103	-	-	-	US	4	4,994	1171	4,261	95
K104	-	-	-	US	4	5,007	703	4,261	149
K105	-	-	-	US	4	5,005	901	4,261	110
K106a	-	-	-	US	4	5,008	243	4,261	184
K106b	-	-	-	US	4	5,008	282	4,261	201
K108	-	-	-	US	4	5,011	536	4,261	93
K109	-	-	-	US	4	5,014	361	4,260	169
K110	-	-	-	US	4	5,008	927	4,261	111
K111	-	-	-	US	4	5,019	565	4,261	175

Anhang: Tabelle VII

		Rm %				5Å - Illit	t - Peak	4.26Å - Qz	- Peak
Proben	Rm (%)		Meß-	Auf-	Meß-	Peak-	Peak-	Peak-	Peak-
Nummer	Rm	s2	Punkte	bereitung	werte	Lage	Intensität	Lage	Intensität
	%	%	n		n	Å	Counts	Å	Counts
K112	-	-	-	US	4	5,012	681	4,260	109
K117	-	-	-	US	4	5,003	707	4,260	146
K118	-	-	-	US	4	5,005	650	4,260	178
FR039	-	-	-	H2O2	4	5,015	337	4,262	148
FR040	4	0,31	9	H2O2	4	5,014	645	4,265	165
FR041	4,2	0,19	25	H2O2	4	5,011	745	4,264	85
FR042	4,1	0,33	25	H2O2	4	5,003	949	4,261	126
FR 043	5	0,22	25	H2O2	4	5,005	2405	4,261	69
FR044	-	-	-	H2O2	4	4,993	262	4,261	46
FR045	4,9	0,25	25	H2O2	4	5,014	540	4,263	94
FR046	4,4	0,42	25	H2O2	4	5,014	394	4,262	65
FR047	5,3	0,26	25	H2O2	3	5,019	457	4,263	155
FR101	3,7	0,56	9	H2O2	4	4,994	123	-	-
FR102	5,2	0,3	25	H2O2	4	5,010	126	4,261	53
FR103	4,7	0,25	25	H2O2	4	5,004	46	4,261	34
FR104	4,8	4,8	-	H2O2	4	5,005	154	4,260	40
FR105	5,4	0,17	25	H2O2	4	5,022	50	4,261	71
FR106	5,2	0,23	25	H2O2	4	5,010	160	4,261	29
FR107	4,2	0,19	25	H2O2	4	5,022	128	4,261	81
FR108	5,4	0,51	16	H2O2	4	4,997	119	4,261	59
FR109	5,5	0,3	15	H2O2	4	4,998	74	4,261	77
FR110	5	0,2	20	H2O2	4	4,997	56	4,261	112
FR111	7,3	0,37	20	H2O2	4	4,997	116	4,261	80
FR112	6,2	0,3	25	H2O2	5	5,003	380	4,261	186
FR113	5,2	0,21	25	H2O2	4	5,008	719	4,261	127
FR114	5,6	0,3	25	H2O2	5	5,004	150	4,261	59
FR115	5,4	0,16	25	H2O2	4	5,004	180	4,261	60
FR116	5,4	0,17	25	H2O2	4	5,003	138	4,261	92
FR117	5,7	0,19	7	H2O2	4	5,005	476	4,261	80
FR118	6,9	0,15	6	H2O2	4	5,005	832	4,261	126
FR119	-	-	-	H2O2	4	5,008	454	4,261	219
FR120	4,7	0,27	25	H2O2	4	5,000	212	4,265	160
FR122	2,9	0,17	25	H2O2	4	5,000	295	4,265	144
FR123	3,4	0,72	15	H2O2	4	4,994	183	4,263	158
FR124	2,8	0,19	25	H2O2	4	4,991	156	4,261	111
FR125	2,4	0,22	25	H2O2	4	5,005	460	4,261	90
FR126	2,9	0,27	20	H2O2	4	4,997	294	4,261	136
FR127	4,3	0,2	28	H2O2	4	5,010	435	4,263	133
FR128	2,8	0,19	21	H2O2	4	5,000	292	4,266	135
FR129	5,1	5,49	25	H2O2	4	5,021	397	4,263	228
FR129a	5,2	0,19	25	H2O2	4	5,019	307	4,263	228
FR130	4,7	0,17	25	H2O2	4	5,005	550	4,261	100
FR131	5,1	0,13	25	H2O2	4	5,014	596	4,263	78
FR132-1	4,7	0,12	25	H2O2	4	5,012	812	4,264	129
FR132-2	-	-	-	H2O2	4	5,008	730	4,261	130
FR133	-	-	-	H2O2	4	5,008	359	4,260	109
FR134	4,5	0,22	10	H2O2	4	4,991	257	4,263	94
FR135	5,5	0,25	25	H2O2	4	4,991	356	4,261	111
FR136	5	0,25	25	H2O2	4	5,003	587	4,261	187
FR137	5,8	0,29	10	H2O2	4	5,003	257	4,261	186
FR138	5,2	0,35	25	H2O2	4	5,010	399	4,261	216
FR139	3,1	0,1	25	H2O2	4	5,005	830	4,261	175
FR141	-	-	-	H2O2	4	5,005	429	4,261	153

Anhang: Tabelle VII

		Rm %				5Å - Illi	t - Peak	4.26Å - Q	z - Peak
Proben	Rm (%)		Meß-	Auf-	Meß-	Peak-	Peak-	Peak-	Peak-
Nummer	Rm	s2	Punkte	bereitung	werte	Lage	Intensität	Lage	Intensität
	%	%	n		n	Å	Counts	Å	Counts
FR142	5,5	0,29	25	H2O2	4	5,007	377	4,261	207
FR144	5,1	0,23	25	H2O2	4	5,003	333	4,261	124
FR145	5,1	0,24	25	H2O2	4	5,008	324	4,265	154
FR146	5,1	0,34	25	H2O2	4	5,014	484	4,262	111
FR147	4,6	0,21	25	H2O2	4	5,014	365	4,262	124
FR158	-	-	-	H2O2	4	4,998	356	4,263	145
FR159	9,1	1,05	7	H2O2	4	5,022	492	4,264	164
FR160	7	1,24	2	H2O2	4	5,008	830	4,261	119
FR161	-	-	-	H2O2	4	5,003	43	4,267	197
FR162	5,3	0,15	25	H2O2	4	4,994	278	4,261	96
FR163	3,6	0,29	25	H2O2	4	5,017	481	4,263	116
FR176	3,7	0,59	4	H2O2	4	5,017	390	4,261	111
FR177	3,1	1	7	H2O2	4	5,000	511	4,261	102
FR178	-	-	-	H2O2	4	5,003	300	4,263	138
FR179	-	-	-	H2O2	4	5,007	433	4,261	112
FR180	5,6	0,19	25	H2O2	4	5,008	742	4,261	68
FR181	6,6	0,55	3	H2O2	4	5,005	1001	4,261	99
FR182	-	-	-	H2O2	4	5,005	344	4,261	112
FR183	5,2	0,33	25	H2O2	4	5,007	609	4,264	79
FR184	4,1	0,3	25	H2O2	4	5,010	131	4,261	78
FR185	3,7	0,19	25	H2O2	4	5,005	190	4,261	159
FR189	5,7	0,28	25	H2O2	4	5,003	546	4,261	83
FR190	5,1	0,46	13	H2O2	4	5,018	297	4,263	265
FR191	4,8	0,38	10	H2O2	4	4,998	271	4,263	159
FR192a	5,3	0,28	25	H2O2	4	5,008	529	4,261	87
FR192b	-	-	-	H2O2	4	5,000	279	4,262	84
FR193	3,3	0,1	25	H2O2	4	5,000	254	4,261	99
FR194	-	-	-	H2O2	4	4,987	229	4,261	130
FR195	3,3	0,23	12	H2O2	4	5,000	321	4,262	110
FR196	2,8	0,24	25	H2O2	4	4,986	330	4,261	95
FR197	2,8	0,21	25	H2O2	4	5,000	270	4,263	83