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Abstract

Der Fusionsprozeß schwerer Kerne wird unter Verwendung des Zweizentren-Schalenmodells
(TCSM für Two-Center Shell Model) untersucht. Zuerst werden diabatische Potentiale als
Funktion geometrischer Parameter und des sogenannten Neckparameters im Rahmen des TCSM
für verschiedene symmetrische und asymmetrische Systeme berechnet. Zur Berechnung der
Energieniveaus wird die Methode der maximalen Symmetrie angewandt. Die diabatischen Po-
tentiale behinden die Bewegung der Kerne zu geringeren relativen Abständen und das Anwach-
sen des Necks. Sie ähneln den im dinuklearen Fusionsmodell verwendeten Kern-Kern- Poten-
tialen. Die Abhängigkeit des diabatischen Potentials von Temperatur und Massenasymme-
trie wird diskutiert. Die Isotopen-Abhängigkeit des im TCSM berechneten Potentials wird
für verschiedene schwere dinukleare Systeme (DNS für Dinuclear System) untersucht. Ein
DNS wird aus zwei sich berührenden Kernen im Minimum des Kern-Kern-Potentials gebildet,
wobei die individuellen Eigenschaften der beteiligten Kerne erhalten bleiben. Des weiteren wird
das Potential des DNS als Funktion der Massenasymmetrie mit anderen mikroskopischen und
phänomenologischen Potentialen verglichen.

Massenparameter für die Variablen eines DNS und eines stark deformierten vereinigten
Kerns werden mikroskopisch unter Verwendung der Breite der Einteilchen-Zustände bestimmt.
Für die Beschreibung der Relativbewegung der Kerne und die Ausbildung des Necks zwischen
den Kernen werden die Massenparameter mit Basis-Zuständen des adiabatischen und diabatis-
chen TCSM berechnet. Die mikroskopischen Massenparameter erweisen sich größer als die nach
dem hydrodynamischen Modell erhaltenen Parameter und verursachen eine starke Behinderung
für das Verschmelzen des DNS entlang der Kernverbindungsachse. Das bedeutet, daß das DNS
eine lange Zeit lebt, die mit der Reaktionszeit für eine Fusion durch Nukleonen-Transfer ver-
gleichbar ist. Konsequenzen dieses Effekts für den gesamten Fusionsprozeß werden diskutiert.

Der zeitabhängige Übergang zwischen einem diabatischenWechselwirkungspotential im Ein-
gangskanal und einem adiabatischen Potential während des Fusionsprozesses wird im Rah-
men des TCSM untersucht. Es wird eine große Behinderung für die Bewegung zu geringeren
Kernabständen von fast symmetrischen DNS gefunden. Der Vergleich der berechneten Energi-
eschwellen für die vollständige Fusion in verschiedenen relevanten kollektiven Koordinaten zeigt,
daß das DNS vorzugsweise in der Massenasymmetrie-Koordinate durch Nukleonen-Transfer zum
vereinigten Kern verschmilzt.

Der Prozeß der Quasi-Spaltung des DNSwird durch die Lösung einer Transport-Mastergleichung
für den Austausch von Nukleonen zwischen den Teilen des DNS behandelt, die auch den Zer-
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fallsprozeß des DNS entlang der Kernverbindungsachse berücksichtigt. Die Quasi-Spaltung-
Produkte von Fusionsreaktionen werden korrekt beschrieben und stimmen mit den experi-
mentellen Daten überein. Es wird gezeigt, daß der Prozeß der Quasi-Spaltung einer der entschei-
denden Faktoren ist, der die vollständige Fusion schwerer Kerne behindert.
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Chapter 1

����� 	
 ��� ��

The elements existing in nature are ordered according to their atomic (chemical) properties

in the periodic system which was developed by Mendeleev and Lothar Meyer. The heaviest

element of natural origin is uranium. The transuranium elements range from neptunium (Z=93)

via californium (Z=98) and fermium (Z=100) up to lawrencium (Z=103). For the heaviest

systems the Coulomb repulsion between the increasing number of protons grows faster than

the attractive nuclear forces. The heavy nuclear systems are macroscopically instable, their

existence is determined by shell effects. Theoretical nuclear physicists ([1], [2]) predicted that

so-called closed proton and neutron shells should counteract the repelling Coulomb forces.

Atomic nuclei with these special ”magic” proton and neutron numbers and their neighbours

could again be rather stable. These magic proton (Z) and neutron (N) numbers were thought to

be Z=114, N=184 or 196. Studies of the shell structure of superheavy elements in the framework

of the meson field theory and the Skyrme-Hartree-Fock approach have recently shown that the

magic shells in the superheavy region are very dependent on isotopes [3]. According to these

investigations, the region of maximum stability may be near Z=120 or Z=126.

The synthesis of new nuclear species relies on the constituents of the premordial nuclei

available in nature. The available nuclei are limited in their neutron-to-proton ratio by the

beta decay and in size by charged-particle decay and fission due to the increasing electrostatic

repulsion between the constituent protons. The first method used to produce transuranium

elements, which is still used to synthesize larger quantities of specific isotopes of elements from

neptunium to einsteinium, was the consecutive capture of neutrons by uranium isotopes and
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the subsequent β− decay of the capture products in nuclear reactors or in nuclear explosions.

However, the number of nuclei attainable by this method is very limited. Isotopes of elements

beyondMendelevium were synthesized by fusion of heavy nuclei. This nuclear reaction was most

successful in heavy-element production. The synthesis of elements Z=102-106 started from the

heaviest possible actinide targets fused with light projectiles ranging from 10B to 26Mg. This

technique depends on the availability of heavy actinides in microgram quantities, and was widely

used with the accelerators of LBL and ORNL in the US and of JINR in Russia. The Berkeley

and Dubna groups developed the pioneering techniques of using heavy-ion accelerators to fuse

nuclei and detection systems to identify the new species [4].

For the synthesis of heavy nuclei, the cold fusion reaction with lead targets introduced by

Oganessian et al [5] successfully replaced the method of the hot fusion reaction using actinide

targets. Based on the fragmentation theory, Gupta, Sandulescu and Greiner [6] theoretically

understood and substantiated the concept of bombarding of double magic lead nuclei with

suitable projectiles. Cold fusion necessitated the development of more powerful ion sources

and accelerators for the heavier ions needed in the reactions with lead. Chemical separation

techniques andmechanical transport systems were replaced by electromagnetic recoil separators,

which reduced the separation time to a few microseconds. The resolving power of detectors

was increased and the introduction of position sensitive detectors allowed for the observation

of generic parent-daughter decays to the known isotopes over a wide range of half-lives. The

electronic data acquisition systems were miniaturized allowing the use of multiple parameter

detector systems. The resulting large volume of data was analysed by fast computers. In cold

fusion reactions at the GSI, the isotopes were unambiguously identified by means of α − α

correlations.

During the last years the region of heavy elements was extended by the production of el-

ements up to Z=112. Here the group at the GSI was very successful utilizing cold fusion

reactions of 208Pb and 209Bi targets with medium heavy projectiles like 40Ar or 50Ti [7]. The

advantage of these reactions is that only slightly excited (E∗
≈ 10− 20MeV ) compound nuclei

at bombarding energies close to the Bass barrier are produced. Low-excitation energies were

considered to be one of the reasons for the survival of fragile heavy nuclei against prompt fission.

Producing the elements from Z=104 to Z= 112 in the cold fusion reactions, the experimentalists
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observed the rapid fall-off of the evaporation residue cross section (about four orders of magni-

tude) with increasing Z of the compound nucleus ([4], [7], [8]). The measured cross section of

the production of the element with Z=112 was 1+1.3
−0.6 pb.

The usual extrapolations of existing data on the synthesis of elements 110-112 indicate that

to reach still heavier elements will require orders of magnitude increases in accelerator beam

currents and new target technologies. It has proven difficult to proceed beyond element 112

using cold fusion reactions [9]. However, the synthesis of the element 293118 by cold fusion

reaction of 86Kr with 208Pb in the LBL [10] has recently been reported. The production cross

section was 2.2+2.6
−0.8

pb. This experiment has been repeated at the GSI, but unfortunately

without positive results. Moreover, new experiments [11] on fission and quasi-fission of the

superheavy element 293118 produced by the same reaction deny the production cross section

obtained in Berkeley.

At the JINR, further isotopes were produced using hot fusion reactions induced by 48
Ca

ions on heavy actinide targets, such as 232
Th, 238

U and 244
Pu, with the evaporation of 3 or

4 neutrons [12]. These reactions allow us the study of decay properties of more neutron rich

isotopes of transfermium elements, which are impossible to synthesize directly by cold fusion

reactions, e.g. long lived isotopes with neutron numbers close to N=162 and Z≥106. Very

asymmetric systems fuse with a higher probability at the Coulomb barrier. Simultaneously

however, the excitation energies of the compound nuclei change from typically 10-20 MeV in

the case of cold fusion reactions to 30-50 MeV. This increase of the excitation energy reduces

the survival probability of heavy compound nuclei. At the same time the fusion probability is

much larger in these reactions than in the Pb-based reactions.

The presently produced heavy elements are rather neutron deficient and close to the border

of proton instability. Especially with stable targets and stable beams it is not possible to reach

the interesting region of magic spherical nuclei with Z = 110− 114 and N = 180 − 184. Here

new possibilities can be opened up with neutron-rich beams and targets [13]. One might expect

that a neutron skin and larger radii of neutron-rich projectiles may lead to enhanced fusion

cross sections. On the other hand, the fast dissipative heating, when transfering loosely bound

neutrons from the projectile to the target, may lead to a reduction of the cross sections.

Here improved models for the reaction mechanisms are required, which in comparison with
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experiment have to be developed to describe the extremely small fraction of the total cross

section leading to fusion. Predictions based on these models are useful in the preparation of the

next generation of experiments. The macroscopic models ([14], [15], [16]) do not reproduce the

excitation function of the reactions used for the synthesis of superheavy elements. Compensat-

ing the dissipative losses in the relative motion, the macroscopical dynamical model (MDM) of

Swiatecki [16] and the surface friction model by Fröbrich [15] have to take an extra-extra-push

energy into account leading to an excitation energy of the compound nucleus which results too

large compared to the experimental data for superheavy elements [17]. In addition, the MDM

concept yields too large evaporation residue cross sections as demonstrated for example for the

100Mo +100 Mo and 110Pd +110 Pd reactions [18] since the MDM does not take into account

the competition between complete fusion and quasi-fission processes. In the MDM, the follow-

ing qualitative picture was considered: i) after the capture, the neck between the nuclei grows

quite quickly and a deformed united system is formed; (ii) the united system either overcomes

the saddle point and moves to the equilibrium state of the compound nucleus or goes to the

quasi-fission channel. The choice of the channel of complete fusion or quasi-fission depends on

the initial kinetic energy of the projectile.

Another method to calculate fusion cross sections is based on the dinuclear system (DNS)

concept [19]. Within this concept, calculations of the complete fusion probability and optimal

excitation energy for the production of compound nuclei between Z=102 and Z=114 are in

agreement with the experimental data ([20], [21] and [22]). The model based on the DNS-

concept gives an explanation of the reduction of the fusion cross sections by quasi-fission and

can be used for the prediction of evaporation residue cross sections in the production of heavy

and superheavy elements by cold and hot fusion reactions [22]. The main idea of the DNS-

concept is the assumption that complete fusion and deep inelastic transfer reactions are similar

nuclear processes. Both of them are realized according to similar scenarios. The scenario of

the complete fusion process is as follows. At the capture stage, after full dissipation of the

collision kinetic energy, the DNS is formed. The complete fusion process is the DNS evolution

that proceeds via nucleon transfer, shell by shell from one nucleus to the other. The DNS nuclei

retain their individuality throughout their way to the compound nucleus. This peculiarity of

the DNS evolution is the consequence of the shell structure of the nuclei.
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Figure 1-1 illustrates the compound nucleus formation process in the framework of the MDM

and the DNS-concept. Reviews on the theoretical basis of the DNS-concept and on the model

treating the competition between fusion and quasi-fission are given in Refs. [17], [21] and [23].

Newer calculations based on the MDM model are the following: In Japan an approach is

being developed on the basis of the MDMmodel with the fluctuation-dissipation effects [24], for

the description of hot fusion of heavy symmetric systems leading to the formation of superheavy

elements. Estimation of the formation cross sections of superheavy elements in the standard

statistical model taking into account the limitations on fusion from empirical systematics were

made in Ref. [25]. In [26], a simple model for description of cold fusion reactions based on

the doubly magic lead target nucleus was proposed. This model assumes that the compound

nucleus is formed by quantal tunneling through the fusion barrier. The model predicts that the

most promising reaction for the production of superheavy nuclei is 208Pb(86Kr, 1n)293118, but

the predicted cross section for this reaction is considerably larger (670 pb) than the production

cross section obtained in Berkeley [10]. The model of fusion based on the DNS-concept predicts

a production cross section of the order of 10−2 pb [27] for this reaction.

Figure 1-1: Illustration of the compound nucleus formation in the framework of the MDM and
DNS-concept.
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1.1 The DNS-concept of fusion

A special feature of deep-inelastic collisions is that they lead to the formation of a DNS [28].

During the entire formation and evolution of the DNS there is a continuous redistribution of

nucleons, excitation energy and angular momentum between the nuclei. An unstable formation

like a dinuclear system ”lives” for the order of a few 10−21s and decays before it achieves

complete statistical equilibrium with respect to all degrees of freedom. The establishment of

equilibrium between the proton and neutron numbers [29] occurs practically instantaneously

in light systems and is a monotonic continuous process in heavy systems [30]. Nucleons are

exchanged slowly between the parts of the DNS. As it evolves, a DNS can in principle pass with

some definite probability through many macroscopic configurations allowed by the conservation

laws for the particle number, charge and total energy. A DNS decays either by the dominance

of forces of repulsion between the interacting nuclei or by the coupling of modes of motion.

Experimental data on the widths of the charge (mass) distributions of the reaction products

[29], the dependence of the yields of nuclei on their nucleon composition [31], and data on the

yields of light particles in collisions that lead to the formation of compound nuclei [32] indicate

that as dinuclear systems evolve, individual features of the nuclei are preserved, and shell effects

play an important part. A review on these experimental evidences is given in Ref. [33]. The

considered experimental data confirm the idea that the individuality of the interacting nuclei is

preserved even for a relatively high excitation energy of the DNS and indicate that shell effects

play a fundamental role in the evolution of the DNS. The study of the influence of shell effects is

topical in connection with planned experiments with radioactive beams, which will significantly

extend the possibilities for investigating the mechanism of nuclear reactions [13].

In the model of fusion based on the DNS-concept, the fusion process is considered as the

evolution of a DNS caused by the transfer of nucleons from the light nucleus to the heavy

one. The dynamics of the DNS is considered as a combined diffusion in the degrees of freedom

of the mass asymmetry η = (A1 − A2)/( A1 + A2) ( A1 and A2 are the mass numbers the

DNS nuclei) and of the relative distance between the centers of nuclei R describing the quasi-

fission process (decay of the DNS), respectively (Fig.1-2). The potential barrier B∗

fus in η

supplies a hindrance for the fusion. The energy required to overcome the fusion barrier B∗

fus is

contained in the DNS excitation energy. As was found in [34], the value of B∗

fus can be much
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smaller than the extra-extra push energy predicted in the MDM. The DNS concept is based

on the assumption that the nuclei keep their individuality near their touching distance. This

assumption is justified by diabatic shell model effects [35] and the structural forbiddennes for

fusion [36], which hinder the nuclei to melt together along the relative coordinate R. These

aspects are phenomenologically described with a double folding potential in frozen density

approximation which shows a minimum near the touching distance of the nuclei. The nuclei of

the DNS are in the touching configuration during the evolution of system in the mass asymmetry

degree of freedom and the decay of the system can only occur in the relative coordinate. There

is experimental evidence that the mass asymmetry degree of freedom equilibrates more rapidly

than the elongation of the system which allows to treat the evolution of the DNS by statistical

models. In order to calculate the probability for fusion PCN , the Fokker-Planck equation for

the complete set of collective coordinates and conjugate momenta (η, pη,R, pR) was solved [34]

within the global momentum approach. The data obtained with this method are in agreement

with the ones calculated in the approach based on the Kramers-type expression for the fusion

rate through the inner fusion barrier of the DNS [34]. The main advantage of the Kramers-type

expression for the fusion rate in contrast to the statistical method [18] is the possibility to

include nuclear viscosity in the fusion process. In these calculations the neck degree of freedom

that is important in the MDM is not considered. As follows from Ref. [37], the extension of

the relevant collective variable set by the neck variable may be questionable for the values of

R considered in the DNS. For a small overlap of the nuclei (that takes place in the DNS), the

neck size is close to the one obtained by a simple superposition of the frozen density tails.

The values of the fusion probabilities obtained in the DNS-model are in agreement with the

values extracted from the experimental data for most of the reactions of heavy nuclei. Thus,

the competition between the complete fusion and quasi-fission processes is extremely important

in the DNS evolution.

The new model suggested in [18] and [34], yields a good agreement between the theoretical

predictions and experimental data on the fusion of heavy nuclei.
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Figure 1-2: Two ways of evolution of the DNS to quasi-fission and fusion.

Within this model the evaporation residue cross-section can be written as

σER(Ec.m.) =
Jmax∑

J=0

σc(Ec.m., J) · PCN (Ec.m., J) · Wsur(Ec.m., J). (1.1)

The capture cross-section σc describes the transition of the colliding nuclei over the Coulomb

barrier and the formation of the DNS when the kinetic energy is transformed into the excitation

energy of the DNS. This initial stage of a collision was recently studied with a dynamical model

[38]. Calculations were performed for 48Ca+244 Pu and 74,76Ge+208 Pb reactions which could

lead to the formation of the superheavy element Z=114. It was shown that for the considered

reactions, there is an energy window for the bombarding energy Ec.m. at which the capture

cross-section σc is large enough to have a physical interest. The value of Jmax corresponds

to Ec.m. and is larger than the limit of the value of J for the compound nucleus formation.

The probability of complete fusion PCN depends on the competition between the complete
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fusion and quasi-fission processes after the capture stage in the DNS. In these reactions the

quasi-fission channel dominates and leads to a strong reduction of the magnitude of the fusion

cross-section. The surviving probability Wsur estimates the competition between fission and

neutron evaporation in the excited compound nucleus and may be calculated according to the

statistical model [39] on the basis of the Monte Carlo method.

1.2 Goals of the present work

The basic microscopical model for the dinuclear system is the two-center shell model (TCSM)

[40] (see Appendix). The usual parametrisation of the two-center potential consists of the

relative distance between the centers (or elongation), the mass (charge) asymmetry η = (A1 −

A2)/(A1+A2), the deformations of the fragments βi and the neck coordinate ε. The elongation

λ = l/(2R0) measures the length l of the system in units of the diameter 2R0 of the spherical

compound nucleus. This variable can be used to describe the relative motion. The mass ratio

between the fragments and the transition of the nucleons through the neck are described by the

mass asymmetry η. The neck parameter ε = E0/E
′ is defined by the ratio of the actual barrier

height E0 to the barrier height E′ of the two-center oscillator. The deformations βi = ai/bi

of axial symmetric fragments are defined by the ratio of their semiaxes. The neck grows with

decreasing ε (Fig.1-3). The potential energy surface (PES) in these coordinates is generally

calculated with the Strutinsky method [41]. This is an adiabatic approach since the nucleons

occupy the single particle states up to the Fermi level in calculating the shell corrections.

The adiabatic potential energy surfaces calculated as functions of the elongation of the

DNS and of the neck parameter were used to study classical trajectories for various heavy ion

reactions by using dissipative forces and mass parameters obtained with the Werner-Wheeler

aproximation [42]. The fusion probabilities in the adiabatic TCSM are much larger than those

obtained from experimental data and show an incorrect isotopic dependence.

The reactions considered were for example the symmetric ones 90Zr+90Zr, 100Mo+100Mo,

110Pd+110Pd, 124Sn+124Sn and 136Xe+136Xe and asymmetric ones. Therefore, it is concluded

that a hindrance exists which prohibits the fast growth of the neck and the motion to smaller

elongations and allows the DNS to survive a time comparable with the reaction time.
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Figure 1-3: Shapes of the system 110Pd+110 Pd as functions of ε and λ.

Motivated by these results, we started to investigate possible factors which hinder the DNS

to melt together in the elongation λ. We consider these factors to be diabatic effects in the

potential energy surface [35] and a large mass parameter in the neck coordinate ε [43]. In-

vestigating these factors, we try to find theoretical justifications for the basic assumptions of

the model of fusion based on the DNS-concept. We would like to stress that the model of

fusion, based on the DNS-concept, explains many experimental data concerning the production

of superheavy elements and plays an important role for giving predictions for new experiments

([22],[27]).

In the present work, using the TCSM, we want to study the following:

• Diabatic potentials as a function of the relevant collective variables of the DNS for heavy-

ion systems.

• Microscopic mass parameters for the relevant coordinates of the DNS formed in collisions

of heavy nuclei taking the width of single-particle states into account.

• Whether the system has time for the growing of the neck.

• Whether the system has time for destroying the ”memory” on the diabatic (structural)

forbiddenness for the fusion in the elongation λ and to find the favorable fusion channel.

• Within which model it is possible to describe the experimental quasi-fission products of

fusion reactions.
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In the present chapter we have presented an introduction of experimental and theoretical

knowledge in the field of transuranium and superheavy elements. A brief review about the

model of fusion based on the DNS-concept as well as a comparison of this model with other

theoretical models of fusion have been presented.

In chapter 2 we give a summary of the main ideas about diabaticity in heavy-ion collisions.

Moreover, the methods of calculations of a diabatic basis in the TCSM are explained. The

potential energy of the DNS as a function of the relevant collective variables of the diabatic

TCSM is shown in chapters 3 and 4 for different heavy systems. In chapter 5 the calculation of

microscopical mass parameters of the DNS formed in reactions with heavy nuclei is presented

by using the adiabatic and diabatic TCSM and the width of the single-particle states. The

competition between two possible fusion channels in elongation λ and in mass asymmetry η is

studied for various heavy systems in chapter 6. In chapter 7 the quasi-fission process of the

DNS is evaluated solving a transport master-equation for the exchange of nucleons between the

parts of the DNS, which also takes the decay of the DNS in the elongation λ into account. A

summary and the outlook of the work are given in chapter 8.
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Chapter 2


�� 	 ��� �� �� ���� ������ � ��� � �� 	��

The study of nucleus-nucleus collisions at energies of some few MeV/u above the interaction

barrier stimulated the development of theoretical concepts for large-amplitude collective nuclear

motion [44]. We note in particular the introduction of transport theories like the random-

matrix approach [45], the one-body dissipation model [46, 47] and the linear response theory

[48]. These theories assume (either explicitly or implicitly) a statistical equilibrium within the

intrinsic degrees of freedom throughout the collision described by a few collective variables.

Such a local equilibrium, however, is not expected to be realistic during the initial stage of

a nucleus-nucleus collision, a process which starts from the approach of two nuclei in their

ground states. Because of the long mean free path, the motion of the individual nucleons during

the approach phase is governed by their self-consistent mean potential which evolves in time.

Therefore, this stage should be well described by the time-dependent Hartree-Fock (TDHF)

theory [49]. Effects from residual two-body collisions and the corresponding transition to local

equilibrium were formulated in extensions of TDHF [50]. An alternative model was introduced

in [51] by the concept of dissipative diabatic dynamics (DDD) as a time-dependent shell-model

approach. This model takes into account simultaneously the coherent and incoherent forms of

motion of the nucleons in nucleus-nucleus collisions. For sufficiently large collective velocities

(typically the collective kinetic energy per nucleon needs to be larger than 0.03 MeV) the

nucleons no longer adjust their wave functions adiabatically but diabatically, thereby preserving

the nodal structure (character) of the wave functions. Adiabatic basis states are not always

useful [52]. It was realized by Landau, Stueckelberg and Zener [53] that it is advantageous at
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higher collective velocities to replace the adiabatic basis states at pseudo-crossings by diabatic

states [54]. Diabatic states belong to crossing levels. This situation is illustrated in Fig. 2-1.

Figure 2-1: Diabatic and adiabatic levels at the Landau-Zener-Stückelberg (quasi-)crossing. In
the diabatic motion the nucleon keeps the nodal structure (character) of the wave function.

Only for very small collective velocities, the nucleons are able to adjust their wave functions

adiabatically and follow the adiabatic levels. At higher collective velocities, a nucleon occupying

the lower level before the crossing with an unoccupied level will stay (while preserving the

character of its wave function) on the diabatic level and finds itself on the upper level after

the crossing. Quantitatively, this jump probability, which measures the degree of diabaticity,

is given by [53]

J = exp(−
1

∆
), (2.1)

where

∆ = h̄ | ∂(ε1 − ε2)/∂q | · |
·

q| /2π | H ′

12
|2 . (2.2)

The quantity ∆ is proportional to the difference in the slopes of the diabatic levels and to
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the collective velocity
·

q, and inversely proportional to the square of the static coupling H ′

12

between the diabatic states. A diabatic basis is advantageous if J > 0.5 and hence, ∆ > 1.44.

The expression (2.1) is obtained in the linear two-state Landau-Zener model [55] which assumes

that the motion of the system in the nonadiabaticity region is quasi-classical.

In the adiabatic TCSM one can observe the mutual repulsion of levels having the same z-

component of total angular momentum jz , which prevents crossings. It is due to the noncrossing

rule obtained by Neumann and Wigner [56]. The noncrossing rule reads [55]: the eigenvalues of

the Hamiltonian H(q), taken to be functions of the coordinate q, do not cross if they belong to

the same irreducible representations of the symmetry group of the Hamiltonian. The eigenvalues

corresponding to different irreducible representations of this symmetry group may cross. The

proof of the noncrossing rule is based on the following arguments: Let the Hamiltonian H(q)

have closely lying eigenvalues E1(q0) and E2(q0) corresponding to the eigenfunctions | 1 >0and

| 2 >0 at a certain value q0 of the collective coordinate, e.g., relative distance R0 of the nuclei.

Treating the Hamiltonian for q values close to q0 as a perturbed H(q0)

H(q) = H(q0) +
∂H

∂q
|q=q0

·δq = H(q0) + V, (2.3)

it can be readily seen that the difference between the energy eigenvalues at point q is

∆E12(q) =
(
{[E1(q0) + V11]− [E2(q0) + V22]}

2 + 4 | V12 |2
)
1/2

, (2.4)

where Vik =0< i | V | k >0. In order that the terms cross, both terms in the radical of

(2.4) must go to zero simultaneously. If | 1 >0 and | 2 >0 belong to different irreducible

representations of the H(q) symmetry group, V12 = 0 and (2.4) can be converted to zero by the

proper choice of δq. But when | 1 >0 and | 2 >0 belong to the same irreducible representations

of the Hamiltonian symmetry group, V12 	= 0 and generally speaking both terms in the radical

of (2.4) cannot go to zero simultaneouly, since they are functions of only one parameter δq. The

noncrossing rule uses a complete symmetry group of the Hamiltonian.
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2.1 General considerations

We want to deal with the single-particle motion in a time-dependent mean field U(x; q(t)), where

x denotes position, spin and isospin of the nucleon and q ≡ {qn(t)} a set of time-dependent

collective parameters describing the shape of the nuclear system. The solution Ψβ(t) of the

time-dependent Schrödinger equation with the Hamiltonian

H = T + U = −−
h̄2∇2

2m0

+U(x, q) (2.5)

can be expressed as an expansion [57]

| Ψβ(t) >=
∑
α

cαβ(t) exp

[
−i

{∫ t

0

dt
′
εα(t

′)−m0W (x; q,
·

q)

}
/h̄

]
| ψα(x, q) >, (2.6)

in terms of some orthonormal stationary basis functions | ψα(x, q) > with the initial condition

cαβ(t = 0) = δαβ . In addition to the usual energy phase factor, a collective phase factor [58, 59]

has been introduced which is common to all states α. In atomic collisions, the velocity potential

W [55] is often allowed to depend on the atomic state α, so that the relative velocities can be

accounted for in specific transfer reactions. Such a refinement can also become important

for grazing nucleus-nucleus collisions. However, for central collisions which lead to compact

nuclear shapes, a common phase factor seems to be more appropriate [57]. This choice has the

advantage of leaving the stationary basis orthogonal and independent of the collective velocity.

Inserting the expansion (2.6) into the Schrödinger equation and projecting onto the state

ψγ , we find the set of coupled first-order differential equations

ih̄
·

cγβ=
∑

α

cαβ < ψγ | H ′
+U1 +U2 | ψα > exp

[
−i

∫
t

0

dt
′{εα(t

′)− εγ(t
′)}/h̄

]
(2.7)

with εα =< ψα | H | ψα > for the determination of the expansion coefficients cαβ . The coupling

terms are given by
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H ′
= H −H0 = H −

∑

α

| ψα > εα(q) < ψα |, (2.8)

U1 = −ih̄

{∑
n

·

q
n∂/∂qn +

1

2
[∆,W ]

}
, (2.9)

U2 =
1

2
m0(∇W )2 +m0

∑

n

(
·

qn∂W/∂qn +
··

qn∂W/∂
·

qn), (2.10)

where H ′ is independent of the collective velocity
·

q. If we choose W to be linear in
·

q, we

have all terms of U1 linear in
·

q, too. Furthermore, the coupling U2 becomes quadratic in
·

q and

proportional to the collective acceleration
··

q, respectively. The optimal choice for the stationary

basis states ψα is defined by minimizing the coupling so that the coefficients cαβ(t) keep close

to the initial values δαβ. We consider the adiabatic and diabatic choices which are convenient

in different regions of the collective velocities.

The adiabatic basis states ψadα ≡ χα are determined by the vanishing of the static coupling

H ′ and hence, are the eigenstates of the total single-particle Hamiltonian H. For a given H the

adiabatic basis is uniquely defined. However, the dynamical couplings < χβ |
·

qn∂/∂qn| χα >

of U1 have localized peaks around pseudo-crossings. Depending on the states χα, the pseudo-

crossings occur at different points in the space of collective variables. Therefore, it is impossible

to find a collective velocity potential W which can compensate the peaks of the couplings

< χβ |
·

q
n∂/∂qn| χα >, Eq. (2.9). Furthermore, dynamical couplings cannot be treated by

perturbation theory [60]. This can be immediately seen from the expression (2.1) for the jump

probability if the diabaticity parameter is rewritten as

∆ = 2h̄ |< χ2 | ∂/∂q | χ1 >qc
| · |

·

q| /π | H ′

12
|, (2.11)

where the dynamical coupling between the adiabatic states at the crossing point q = qc enters

into the numerator. Thus, the jump probability (2.1) cannot be expanded in powers of the

dynamical coupling matrix element. Because of this, the adiabatic basis is only convenient for

very small collective velocities so that the single-particle motion is purely adiabatic.

For larger velocities it is often more convenient to choose basis states ψα which have smaller
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dynamical couplings. Diabatic basis states ψdiab

α
≡ φα are defined [57] by the condition that

the first-order dynamical coupling (2.9) vanishes. Introducing the decomposition W =
∑

n

·

q
n

wn(x, q), it is obtained [57]

−(∂/∂qn) | φα >=
1

2
[∆, wn] | φα >=

{
(∇wn) · ∇+

1

2
(∆wn)

}
| φα > (2.12)

as the diabaticity criterion which is independent of
·

qn and hence allows to define stationary

diabatic basis states. The relation (2.12) ascribes the change of any diabatic state with qn to a

collective displacement field ∇wn which scales all wave functions in the same way.

The diabaticity criterion (2.12) does not rigorously determine a diabatic representation

because the velocity field is not uniquely defined. Therefore, the following condition

< φβ | H
′ | φα >� 0 (2.13)

is added. This condition is appropriate whenever the collective velocities are sufficiently smaller

than the Fermi velocity. The supplementary condition (2.13) then suggests to construct the di-

abatic basis states from adiabatic states by avoiding the dramatic changes of the wave functions

near pseudo-crossings.

2.2 Construction methods

In atomic physics, a large variety of construction methods for diabatic representations have

been considered [55, 61]. Within the TCSM, two methods for the construction of diabatic

states were developed [57] for central nucleus-nucleus collisions. The method of maximum

overlap is based on the construction of crossings of diabatic levels where pseudo-crossings occur

in the adiabatic TCSM. The construction of the diabatic states as a function of the relative

distance starts from the separated nuclei where adiabatic and diabatic states coincide. A

diabatic state at a smaller relative distance is obtained from a linear combination of a few

adiabatic states which maximizes the overlap with a diabatic state at somewhat larger relative

distance. Using the so constructed states, one is able to obtain step by step the diabatic states

for smaller relative distances. The method of maximum symmetry eliminates the symmetry-
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violating parts SV from the total HamiltonianH of the TCSM. Then the diabatic states are the

eigenstates of the difference Hd = H − SV , which is taken as the diabatic TCSM-Hamiltonian

in the case of equal nuclei (symmetric system). Since the symmetry of Hd is higher than

that of H, the irreducible representations of the Hd symmetry group appear to be, generally

speaking, reducible representations of the H symmetry group. Thus two different irreducible

representations of the Hd symmetry group can contain the same irreducible representations of

the H symmetry group. Therefore, in the general case the Hd eigenvalues possessing the same

symmetry relative to the H symmetry group may cross. This crossing will become an avoided

crossing if the perturbation SV , which is nondiagonal in the quantum numbers specifying the

Hd eigenvalues, is taken into account. For slightly asymmetric systems, the diabatic states are

defined by the expansion of the asymptotic states in terms of such maximum symmetry states.

Keeping the expansion coefficients fixed as functions of the collective coordinate q, diabatic

states are obtained with the desired property that their wave functions adjust to the shape of

the TCSM potential by a minimum change in their structure. Diabatic levels obtained with

this method agree with those from the maximum overlap procedure [57]. In the calculations we

use the method of maximum symmetry because it turns out to be numerically easier to handle.
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Chapter 3

�������� �� �� �� � 	�� �� ��� 
�� �

The synthesis of transuranium and superheavy elements ([4], [7], [8]), the production of superde-

formed nuclei and nuclei far from the line of stability stimulate the study of fusion processes

in heavy ion collisions at low energies (< 15 MeV/u). Existing theoretical models can be

distinguished by the choice of the relevant collective variables in which the fusion occurs. The

relative distance between the centers of nuclei R (or elongation of system) and the neck degree

of freedom play an essential role in the macroscopic dynamical model (MDM) [16], which is

based on an adiabatic approach to fusion. Without regarding the competition between complete

fusion and quasi-fission, this model overestimates the fusion cross section of heavy nuclei [18].

Attempts were made to improve this model by including thermal fluctuations and the competi-

tion between complete fusion and quasifission in [62], but an agreement with the experimental

data was not achieved for the reactions treated in this study. Corrections to these results could

arise from nuclear structure effects in collisions with energies slightly above the Coulomb bar-

rier. In a recent paper [42], the shell effects were incorporated by using the two-center shell

model (TCSM) [40]. The study of the dynamics of fusion within the adiabatic TCSM overes-

timates the fusion probabilities for most symmetric and near symmetric reactions. Moreover,

the isotopic dependence of the fusion probability resulted incorrectly. Therefore, hindrances

for the growth of the neck and for the motion to smaller values of R should be assumed to

explain the experimental data. This hindrance allows the dinuclear system (DNS) to keep a

relatively small neck over a time comparable with the reaction time. Then the fusion proceeds

as a motion of the DNS in mass asymmetry. Such a hindrance of the motion to smaller R is
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explicitly assumed in the DNS model [34], which describes the experimental fusion data quite

well. The nuclei in the DNS could be hindered to melt together in R due to diabatic effects or

due to a specific behaviour of the mass parameters.

In this chapter we study the diabatic potentials for heavy nuclear systems as a function

of the elongation λ, the neck coordinate ε and the mass asymmetric η using the method of

maximum symmetry within the generalized TCSM [35]. In the previous calculations [57] a

simplified version of the TCSM was used and the role of the neck coordinate was not taken into

account. We will compare our results with nucleus-nucleus potentials obtained by using a double

folding procedure for the nuclear interaction. The calculations are performed for the symmetric

systems 90Zr+90Zr, 96Zr+96Zr, 100Mo+100Mo, 110Pd+110Pd, 130Xe+130Xe and 136Xe+136Xe.

The asymmetric systems 110Pd+136Xe, 86Kr + 160Gd and 48Ca+198Hg are also studied. The

applicability of the diabatic method will be discussed for collisions near the Coulomb barrier.

3.1 The diabatic potential

In a diabatic description the nucleons do not occupy the lowest free single-particle levels as in

the adiabatic case, but remain in the diabatic levels during the collective motion of the nuclear

system. As a result, the diabatic potential energy surface is raised with respect to the adiabatic

potential energy surface and new potential barriers for collective variables may appear. The

values of these barriers can be also estimated by calculations of the structural forbiddenness of

fusion [36]. The concept of structural forbiddenness is based on the difference created by action

of the Pauli principle between the state of the compound nucleus and the state of the separated

heavy nuclei [63].

The total diabatic potential is defined as

Vdiab(q) = Vadiab(q) + ∆Vdiab(q), (3.1)

where the set of collective coordinates of the system is denoted by q. The adiabatic potential

energy

Vadiab(q) = ELDM + VN + δEshell + δEpair −ECN
LDM (3.2)
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is calculated within the TCSM using the liquid drop energy ELDM , the Strutinsky prescription

for the shell correction δEshell, pairing correction δEpair and the proximity nuclear potential

VN to improve the adiabatic energy for large elongations [42]. The adiabatic potential energy

is normalised to the liquid drop energy ECN
LDM of the spherical compound nucleus.

The diabatic contribution ∆Vdiab is expressed as

∆Vdiab(q) =
∑

α

εdiabα (q)ndiab
α −

∑

α

εadiabα (q)nadiab
α (q)

=
∑

α

εdiabα (q)(ndiab
α − nadiab

α (q)) +
∑

α

nadiab
α (q)(εdiabα (q)− εadiabα (q))

≈

∑

α

εdiabα (q)(ndiab
α − nadiab

α (q)), (3.3)

where the contribution from the second term with (εdiabα (q)−εadiabα (q)) is assumed to be negligible

because the adiabatic and diabatic single-particle levels differ only in the area of the pseudo-

crossings of adiabatic states [57]. The diabatic occupation probabilities ndiab
α are determined

by the configuration of the separated nuclei. The adiabatic occupation probabilities nadiab
α vary

with q according to the ground-state configuration where only the lowest levels are occupied.

The diabatic levels εdiabα are classified by the quantum numbers α = jz, lz , sz , nρ, nz of the

eigenstates of the diabatic Hamiltonian. We only used the diagonal elements of the symmetry-

violating parts of the generalized TCSM Hamiltonian. Non-diagonal elements arise only from

the spin-orbit potential VLS (A.3), the centrifugal potential VL2 (A.4) and the neck potential

H1 (A.16). The first two potentials contain lx, ly, sx and sy. The diabatic Hamiltonian is

expressed as

Hd = H0 + Vlzsz + Vl2
z

+H, (3.4)

where H0 is the Hamiltonian of a two-center oscillator (A.15). The influence of the neck

parameter ε is taken into account by means of the diagonal contribution of the difference

H ≡ H1(ε)−H1(ε = 1) =
(ε− 1)

2
m0ω

2

z
z

′2(1 + cz′ + dz′2), (3.5)

where the coefficients c and d are determined by requiring that the potential and its derivative
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are continuous with respect to z at z = 0. For z < 0 and z > 0, the oscillator frequencies ωz

must be determined numerically from the assumption of volume-conservation. With the method

suggested we can find the diabatic levels close to the adiabatic levels (Fig. 3-1). Differences

take place only near the crossing points. In contrast to Ref. [57], we can consider the diabatic

effects for any neck parameter ε. This yields a better shape parametrisation of the DNS.

3.2 Results and discussion

In the calculations, we firstly consider symmetric collisions of spherical nuclei and then analyse

asymmetric entrance channels, thermal and deformation effects. The diabatic contribution

∆Vdiab as a function of the elongation is presented for the reaction 100Mo+100Mo in Fig. 3-2.

The nuclei are considered as spherical with ε = 0.74, which supplies realistic shapes of the

DNS for λ = 1.5 − 1.6. ∆Vdiab consists of contributions from neutrons and protons. The

diabatic contribution increases with decreasing λ or R because many diabatic levels cross the

Fermi level (Fig. 3-3). In general, the diabatic contribution increases with the mass number

A of the system because of the larger number of level crossings. The diabatic contribution

∆Vdiab of many symmetric systems selected along the line of beta stability shows diabatic shell-

structure effects [63, 64]. The role of these effects is demonstrated in Fig.3-4a by the diabatic

contributions of neutrons and protons for the systems 90Zr+90Zr and 96Zr+96Zr. While the

diabatic contributions of the protons are nearly the same in both the systems, the diabatic

contributions of the neutrons are quite different. As a result, the total diabatic potential is

more repulsive in the case of 90Zr+90Zr (Fig. 3-4b).

Further diabatic potentials are presented in Figs.3-4c and 3-5 for the systems 130Xe+130Xe,

136Xe+136Xe, 100Mo+100Mo and 110Pd+110Pd. The neck parameter is fixed at ε = 0.74 and the

nuclei are considered as spherical. Excepting the potentials with the Xe isotopes (Fig. 3-4c),

the diabatic potentials for all these systems have a pocket near to the touching configuration

(λ = 1.58) in which the DNS could stand some time and evolve in mass asymmetry. For smaller

elongations, the diabatic potential is strongly repulsive in all symmetric systems.

The diabatic potential is similar to the one calculated with the phenomenological double folding

potential. In Fig. 3-5 we compare the diabatic potential of the system 110Pd+110Pd with the
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Figure 3-1: Diagrams of adiabatic (upper part) and diabatic (lower part) neutron levels with
jz = 1/2 for 100Mo+100Mo as a function of elongation λ. The nuclei are considered as spherical
with ε = 0.74. The adiabatic levels are calculated with the generalized TCSM Hamiltonian
(A.14) and the diabatic levels with the diabatic Hamiltonian (3.4) using the maximum symmetry
method.
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Figure 3-2: Diabatic contribution ∆Vdiab as a function of elongation λ for the system 100Mo+
100Mo (solid line). The neutron and proton diabatic contributions are shown by dotted and
dashed lines, respectively. The nuclei are considered spherical with ε = 0.74.

phenomenological double folding potential [65]. A discrepancy with the adiabatic potential is

seen for small elongations where the phenomenological potential is more repulsive than the

diabatic one. The discrepancy becomes smaller if we take into account a decrease of ε with

decreasing elongation. This is demonstrated for the system 110Pd+110Pd in Fig. 3-6, where the

diabatic potential is shown as a function of ε for constant values of λ. The minimum of the

diabatic potential moves to smaller values of ε with decreasing values of λ (or R).

Fig. 3-6 shows diabatic potentials for the systems 96Zr+96Zr and 90Zr+90Zr as a function of

ε for λ = 1.54 near to the minimum of the pocket in λ. The diabatic contribution is smaller as

a function of ε for the 96Zr+96Zr system than for the 90Zr+90Zr system (lower part of Fig. 3-7).

The reason for this can be seen through an analysis of the single particle spectra (Fig. 3-8).

In the case of 90Zr+90Zr, more diabatic levels with larger slopes cross the Fermi-level at larger

values of ε. From Figs. 3-3 and 3-8 it follows that the diabatic contributions are larger with

respect to the relative coordinate than with respect to the neck coordinate. This is explained by

the number of crossings of diabatic states in the variation of both coordinates. In most systems
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Figure 3-3: Diagram of diabatic neutron levels with jz = 1/2 near the Fermi level (squares) for
100Mo +100 Mo as a function of λ. The nuclei are considered as spherical with ε = 0.74. The
diabatic levels are calculated with the diabatic Hamiltonian (3.4) using the maximum symmetry
method.
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Figure 3-4: a) Diabatic contributions of protons and neutrons for the systems 90Zr + 90Zr

(solid line) and 96Zr + 96Zr (dotted lines). Diabatic potentials for the systems b) 90Zr + 90Zr
(solid line) and 96Zr + 96Zr (dotted line) and c) 130Xe+130Xe (solid line) and 136Xe+136Xe

(dotted line). The nuclei are assumed as spherical with ε = 0.74.
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Figure 3-5: Diabatic potentials for the systems 100Mo+100Mo (dotted line) and 110Pd+110Pd
(solid line). The phenomenological double folding potential for the system 110Pd +110 Pd is
shown by the dashed-dotted line. The discrepancy between this potential and the diabatic
one becomes smaller if, by starting at the minimum of the pocket, the neck parameter ε is
diminished with decreasing λ (dashed line for 110Pd+110 Pd).

Figure 3-6: Diabatic potentials as a function of ε for the system 110Pd+110 Pd at λ = 1.34 and
1.56.
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considered, the diabatic potential has a minimum as a function of ε around ε = 0.65 − 0.85.

Since the mass parameter in ε has been shown to be large [43], it strongly hinders the growth

of the neck even for a small energy gain from the diabatic contributions during a variation of

the neck coordinate.

Fig. 3-9 shows diabatic potentials as a function of λ for the asymmetric systems 110Pd+136

Xe, 86Kr+160Gd and 48Ca+198Hg, which lead to the same compound nucleus 246Fm. These

diabatic potentials are also strongly repulsive for smaller elongations and the quasi-fission bar-

rier of the pocket becomes larger with the increase of the mass asymmetry η. In the upper

part of Fig. 3-10, the diabatic contributions for the system 220U(110Pd+110Pd) are shown for

η = 0 and 0.5 at ε = 0.74. For an asymmetric clusterization of 220U, the diabatic hindrance

for the motion to smaller values of λ is smaller than for the symmetric configuration. This

means that the evolution of the asymmetric DNS to the compound nucleus is more favored,

which is supported by the experimental data. Since the diabatic effects are small near the

touching of the nuclei, they are not important for the potential of the DNS as a function of the

mass asymmetry at the touching configuration of the nuclei. The difussion process in the mass

asymmetry η at the touching configuration of the nuclei starts after the formation of the initial

DNS at the pocket of the potential in λ for a large fixed value of ε, e.g., ε = 0.74. This slow

difussion process is studied using an adiabatic potential which will be presented in chapter 4.

The dependence of the diabatic contribution on the temperature is presented in the lower

part of Fig. 3-10 for the system 220U(110Pd+110Pd). For this calculation, we take the occupa-

tion probabilities ndiab
α

given by the Fermi-distribution at finite temperature for the touching

configuration of the nuclei. This temperature could be related to the excitation of the nuclei

in the approaching phase of the collision. The initial excitation energy of the system decreases

the repulsive character of the diabatic contribution due to smaller occupation numbers of the

diabatic states under the Fermi-level. If these states are occupied and cross the Fermi-level from

below, they increase the repulsive contributions of the potential, while occupied states above

the Fermi-level, crossing it from above with decreasing λ, diminish the diabatic contributions.

The diabatic contributions increase with prolate deformations and decrease for oblate defor-

mations (Fig. 3-11). However, in order to conclude about an advantageous fusion with oblate

nuclei, the corresponding mass parameters should first be analysed.
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Figure 3-7: The same as in Fig. 3-6 for the systems 90
Zr+90

Zr and 96
Zr+96

Zr for λ = 1.54,
which is near to the minimum of the pocket in λ (upper part). The diabatic contributions for
these systems are presented as a function of ε in the lower part.
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Figure 3-8: Diabatic neutron single-particle spectra as a function of ε for the systems 90
Zr+90

Zr

(upper part) and 96
Zr+96

Zr (lower part) for λ = 1.56, corresponding roughly to the minimum
of the pocket. The Fermi level is indicated by triangles.
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The estimated collective velocities in λ and ε are large enough to consider diabatic effects

in the DNS. We estimated the minimal excitation energy per nucleon ε
∗ for the applicability of

the diabatic treatment. The value of ε∗ must fulfill the following inequality [52]

ε
∗ ≥ (1.4× 10−22MeVs)

2π|Hαβ |2

h̄|∂εαβ/∂q|κ
, (3.6)

where κ is the mean distance in q between two subsequent crossings. The numerical factor in

(3.6) is obtained by using the Fermi-gas model for estimating the decay time due to residual

two-body collisions [52]. From the study of the diabatic and adiabatic levels of the systems

considered, we obtained ε∗ ≥0.03 MeV for the relative motion in R and ε∗ ≥ 0.07 MeV for

the motion in the neck coordinate ε. Therefore, the diabatic effects are already important for

relatively small excitation energies of 6—14 MeV. For the relative motion, the averange values

of the coupling |Hαβ| and of the difference |∂εαβ/∂R| in the slopes of the crossing levels are

0.17 MeV and 1.52 MeV/fm, respectively. The value of the coupling |Hαβ| is estimated as the

half of the difference of energies of the adiabatic levels α,β at the pseudo-crossing point. For

the motion in the neck coordinate, we obtained |Hαβ | = 0.2 MeV and |∂εαβ/∂ε| = 0.77 MeV.

Since in Ref. [52] the diabatic single particle spectra were calculated with another Hamiltonian,

a larger minimal value of ε∗ was obtained.

In the present chapter we studied diabatic potentials as a function of elongation, neck

coordinate and mass asymmetry for various heavy systems. The calculations were performed

using the maximum symmetry method with the generalized TCSM. The diabatic effects give

rise to hindrances for the growth of the neck and for the motion to smaller relative distances.

The diabatic potentials as a function of the elongation are similar to the phenomenological

double folding potentials used in the DNS model of fusion, which describes the experimental

data quite well. For the asymmetric DNS, the diabatic hindrance for the motion to smaller

elongations is smaller than for the symmetric DNS and, therefore, its evolution to the compound

nucleus in λ is more favored. The quasi-fission barrier becomes larger with the increase of the

mass asymmetry in the entrance channel. The temperature decreases the repulsive character

of the diabatic potential. The diabatic TCSM supports the model of fusion based on the DNS

concept, where a hindrance for the motion to smaller values of λ is assumed. The diabatic
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Figure 3-9: Diabatic potentials for the asymmetric systems 110Pd+136Xe (η = 0.1, solid line),
86Kr+160Gd (η = 0.3, dashed line) and 48Ca+198Hg (η = 0.6, dotted line) which lead to the
same compound nucleus 246Fm. The nuclei are considered as spherical with ε = 0.74.
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Figure 3-10: Diabatic contributions as a function of λ for the mass asymmetries η = 0 (dotted
line) and 0.5 (solid line) in the system 110Pd+110Pd at ε = 0.74 (upper part). The dependence
on temperature is shown for η = 0 in the lower part. T = 0MeV : solid line, T = 1MeV : dotted
line.
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Figure 3-11: Diabatic contributions as a function of λ for oblate (β = 0.9, solid line) and prolate
(β = 1.1, dotted line) nuclei in the system 110Pd+110 Pd. The neck parameter ε is 0.74.
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effects give a justification for the use of the DNS in heavy ion collisions at low energies.
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Chapter 4
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The evolution of the dinuclear system (DNS) proceeds along a large number of trajectories

in the configuration space. The mass (charge) asymmetry η = (A1 − A2)/(A1 + A2) (ηZ =

(Z1 −Z2)/(Z1 +Z2)) (A1 (Z1) and A2 (Z2) are the mass (charge) numbers of two nuclei) and

the distance R between the centers of nuclei (or the elongation λ of the system) are assumed to

be the most important degrees of freedom in the DNS [18, 34]. The preferable fusion channel in

the DNS model [18, 34] is the evolution of the DNS to a compound nucleus by nucleon transfer

from a light nucleus to a heavy one, the motion to larger η at the touching configuration of

the nuclei. In this model the melting of nuclei in the relative distance R is strongly hindered.

This hindrance can be explained by a structural forbiddenness effect [36], by diabatic effects

for the motion of the system to smaller relative distance [35, 66] and by a large microscopical

mass parameter for the growth of the neck [43]. The dynamics of the DNS is ruled by the

potential energy surface which depends on the isotope composition, on the structure of the

fragments determining the transfer processes and collective excitations, and on the division of

the excitation energy between the nuclei.

In this chapter, we compare the potential energy U as a function of η at the touching

configuration of the nuclei (driving potential) obtained with different methods. The value of

R for the touching configuration is determined by η and by deformations of the DNS nuclei.
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The similarity of the potential energy U as a function of η at the touching configuration of the

nuclei calculated within different approaches can indicate the stability of the results obtained

in the DNS model.

Using a small overlap of the DNS nuclei, the value of U is calculated as the sum of asymptotic

binding energies of the nuclei and the nucleus-nucleus potential [34, 65] in the phenomenological

treatment. Since the DNS nuclei retain their individual properties, in this approach the shell

effects enter U through the binding energies of the two nuclei.

In the microscopical consideration, the DNS potential energy as a function of η can be

calculated within the adiabatic TCSM using the Strutinsky method. Contrary to the phenom-

enological approach, in the TCSM-method we do not need the calculation of the nucleus-nucleus

interaction. There is an alternative microscopical method where the energy of the DNS as a

function of η is calculated using the rate of probability of nucleon transfer between the DNS

nuclei. In this method, which we call ”alternative microscopical method” to distinguish it from

the TCSM-method, the energy contains not only the potential energy, but the contribution from

the kinetic energy. Therefore, this driving potential could deviate from the driving potentials

calculated phenomenologically and within the TCSM.

In Sect. 4-1, methods of calculation of the driving potential in the phenomenological ap-

proach, within the TCSM and in the alternative microscopical approach are presented. The

isotopic dependence of the phenomenological driving potential was analysed in [67]. In Sect. 4-

2, we check whether this dependence is the same for the driving potential calculated within the

TCSM. The isotopic dependence of the fusion barrier in mass asymmetry is studied. The effect

of the deformation of the DNS nuclei on the potential energy is demonstrated.

4.1 Methods of calculation of the driving potential

4.1.1 Phenomenological method

The phenomenological driving potential is calculated as in [34, 65]

U(R,η, ηZ) = B1 +B2 + V (R, η, ηZ)−B12, (4.1)
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where B1, B2, and B12 are the binding energies of the fragments and the compound nucleus,

respectively, and are calculated with liquid-drop masses for large excitation energies and with

realistic masses [68] for small excitation energies. The value of U(R,η, ηZ) is normalised to the

binding energy B12 of the compound nucleus. The nucleus-nucleus potential V (R, η, ηZ) in (4.1)

includes the Coulomb and nuclear terms. The nuclear part of the nucleus-nucleus potential is

calculated using a double-folding procedure [65]. The phenomenological driving potential is

obtained as U(η) = U(Rm, η, ηZ), where Rm = R1 +R2+0.5 fm (Ri is the radius of the nuclei)

is the distance between the centers of interacting nuclei corresponding to the minimum of the

pocket in the nucleus-nucleus potential V (R,η, ηZ). For heavy systems and small values of the

angular momentum, the influence of the rotational energy is negligible [34, 69]. Deformation

effects are taken into account in the calculation of V (R,η, ηZ) [34]. The heavy nuclei in the

DNS, which are deformed in the ground state, are treated with the parameters of quadrupole

deformation taken from Refs. [70, 71]. The light nuclei of the DNS are assumed to be deformed

only if the energy of their 2+ state is smaller than 1.5 MeV. As known from experiments on

sub—barrier fusion of lighter nuclei [72], these states are easily populated. For the collision

energies considered here (above and near the Coulomb barrier), the relative orientation of the

nuclei in the DNS follows the minimum of the potential energy.

4.1.2 TCSM-method

The driving potential is calculated using the adiabatic TCSM (3.2) because the diabatic effects

are small near the touching configuration of the nuclei. Since we consider small excitation ener-

gies (20− 30MeV ), for which the shell effects remain important, the dependence of δUshell and

δUpair on the temperature is disregarded here. The isotopic composition of the nuclei forming

the DNS is chosen with the condition of N/Z- equilibrium in the system. The deformations

βi = ai/bi of the DNS nuclei are calculated from their semiaxes ai and bi (see Appendix). The

semiaxes ai and bi of the nuclei can be related to the parameter of the quadrupole deformation

[70, 71] using the known expansion of the nuclear surface in spherical functions. The neck

parameter ε is 0.74, which supplies realistic shapes of the DNS for the touching configuration

of the nuclei (λ = 1.5− 1.6) .
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4.1.3 Alternative microscopical method

Since the isotopic composition of the nuclei forming the DNS is chosen with the condition of

the N/Z-equilibrium in the system, mass and charge evolutions (neutrons and protons transfer)

are related to each other. The charge number Z of the light fragment is used instead of the

charge asymmetry ηZ . The potential is obtained by an iteration procedure [33, 73]

Ũ(Z + 1) = Ũ(Z) + T · ln


∆

(−)
Z+1

∆
(+)
Z


 , (4.2)

where the microscopic transport coefficients ∆
(±)
Z

[74]

∆
(+)
Z

=
1

∆t

∑

α,β

| gαβ(R) |2 nZβ (T )(1− nZα(T))
sin2[∆t(ε̃Zα − ε̃Zβ )/2h̄]

(ε̃Zα − ε̃Z
β
)2/4

, (4.3)

∆
(−)
Z

=
1

∆t

∑

α,β

| gαβ(R) |2 nZα(T )(1− nZβ (T))
sin2[∆t(ε̃Zα − ε̃Zβ )/2h̄]

(ε̃Zα − ε̃Z
β
)2/4

characterise the rate of probability of the proton transfer from a heavy to a light nucleus

(∆
(+)
Z

) or in the opposite direction (∆
(−)
Z

). The DNS temperature T is calculated using the

Fermi-gas expression T =
√
E∗/a with the excitation energy E∗ of the DNS and with level-

density parameter a = Atot/12 MeV−1, where Atot is the total mass number of the system. In

the expression (4.3), ”α” and ”β” are the quantum numbers characterising the single-particle

states in light and heavy nuclei respectively, nα(T) (nβ(T )) are the temperature-dependent

occupation numbers of the single-particle states in a light (heavy) nucleus, gαβ are the matrix

elements for the nucleon transition from nucleus to nucleus because of the action of the mean

fields of the reaction partners [33, 73]. The time interval ∆t = 1.5 × 10−22s must be larger

than the relaxation time of the mean field but considerably smaller than the characteristic

evolution time of the macroscopic quantities. The mutual influence of the mean fields of the

reaction partners leads to the renormalisation of the single-particle energies ε̃α(β) of the nuclei

[33, 73]. Peculiarities of the structure of interacting nuclei are explicitly taken into account in

the transport coefficients (4.3), which are calculated using realistic schemes of single particle

levels. For the single-particle spectrum, the spectrum for a spherically symmetric Woods-
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Saxon potential Vi(i = 1, 2) that contains central, spin-orbit and Coulomb (for the protons)

interactions is used. The single-particle wave function ψi(i = α,β) is obtained using the same

Woods-Saxon potential Vi(i = 1, 2). The matrix elements gαβ(R) are presented in [75], where

the analytical method of their calculation has been suggested (see also Appendix of the Ref.

[33]). The total single-particle potential of the DNS [V1(r)+V2(r−R)] is used to calculate the

matrix element for nucleon transfer gαβ(R) = 1

2

∫
drψ∗

β(r)[V1(r) + V2(r−R)]ψα(r −R).

The expression (4.2) is obtained in [33, 73] assuming that the probability of the different

DNS configurations in Z is stationary and reaches a statistical equilibrium for a temperature

T . In this approach, the decay of the DNS configurations in the relative distance R is not

considered when the system evolves in the variable Z.

4.2 Results and discussion

4.2.1 Isotopic dependence of the driving potential

Figs. 4-1 to 4-5 show the isotopic dependence of the driving potentials U(η) calculated with the

TCSM-method for the heavy systemsHg, Pb, Po, Th and Fm, respectively. From these figures,

we can see that the driving potential is sensitive to the mass number of the dinuclear systems.

Such behaviour was also observed in [73] for the potentials obtained with the alternative mi-

croscopical method and with the phenomenological method. In general, it is observed that the

heavier the isotope, the larger is the fusion barrier in η. Many of the fusion characteristics

are given by the static potential energy surface. It provides the information about the energy

threshold for fusion, which determines the optimal bombarding energy. In the DNS model, the

inner fusion barrier in mass asymmetry supplies the hindrance for complete fusion. The top of

this barrier coincides with the maximum (Businaro-Gallone point) of the DNS potential energy

as a function of mass asymmetry. The fusion barrier Bη in η for a reaction under consideration

is defined as the difference between the potential energies of the initial DNS and of the DNS

in the Businaro-Gallone maximum. If the excitation energy is sufficient to overcome this bar-

rier, then the fusion in the mass asymmetry degree of freedom occurs. From these Figures, we

can also observe that the Businaro-Gallone point moves towards larger asymmetries with the

increase of the mass number of the compound nucleus. From Fig. 4-5, we see that according
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to the DNS concept [18, 34], cross sections for the synthesis of the heaviest elements in nearly

symmetric reactions are very small due to large fusion barriers in mass asymmetry and, corre-

spondingly, due to small fusion probabilities, for example in the reactions 128Sn+126Sn→254Fm

and 132Sn+132Sn→264Fm.

Table 4-1 shows the fusion barriers BTCSM
η in η calculated with the TCSM-method for the

reactions which produce the systems of the Figs. 4-1 to 4-5. These barriers are compared with

the experimental surplus of energy ∆Bexp = Bexp
−BBass above the Bass barrier BBass [76].

The value of Bexp is defined [4] as the value of the bombarding energy for a fusion probability

0.5. The Bass potential [77] is an empirical nucleus-nucleus potential derived from a geometric

interpretation of fusion data above the Coulomb barrier for systems with Z1 × Z2 = 64− 850.

As shown in Table 4-1, the isotopic trends of the fusion barrier, calculated with the TCSM-

method, agree with the experimental data. The experimentally observed hindrance of the

fusion roughly increases with a growing Coulomb repulsion between the colliding nuclei, but

also their shell structure and isotopic composition play a major role [78, 79, 80]. The energy

thresholds for fusion increase and, correspondingly, the fusion probabilities decrease [79, 80]

when the neutron number of projectile or target increasingly deviates from a magic number in

the reactions 90,96Zr +90,96 Zr, 90,96Zr +100 Mo, 94,100Mo+100 Mo and 90,96Zr +124 Sn. This

effect is simply explained by the deformation of the nuclei in the initial DNS and in the DNS at

the top of the barrier in η and by the shell effects in dependence of the DNS potential energy on

η [34, 67]. In these calculations, we did not average the inner fusion barrier in mass asymmetry

over all possible orientations of colliding nuclei as we usually do in the calculations of fusion and

evaporation residue cross sections, taking the half of the deformation parameters of the nuclei

in the entrance channel. They are not always in good agreement with ∆Bexp because these

data are not directly measurable but are obtained with model assumptions about the fusion,

the surviving probabilities and the Bass barrier.
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Figure 4-1: Driving potentials calculated with the TCSM-method for the systems 180Hg (solid
line) and 192Hg (dotted line), which are produced by the reactions 90Zr+90Zr and 96Zr+96Zr,
respectively. The injection point for these reactions is indicated by an arrow.
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Figure 4-2: The same as in Fig. 4-1 for the systems 190Pb (solid line) and 196Pb (dotted line),
which are produced by the reactions 90Zr +100 Mo and 96Zr +100 Mo, respectively.
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Figure 4-3: The same as in Fig. 4-1 for the systems 194Po (solid line) and 200Po (dotted line),
which are produced by the reactions 94Mo +100 Mo and 100Mo+100 Mo, respectively.
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Figure 4-4: The same as in Fig. 4-1 for the systems 214Th (solid line) and 220Th (dotted line),
which are produced by the reactions 90Zr +124 Sn and 96Zr +124 Sn, respectively.
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Figure 4-5: The same as in Fig. 4-1 for the systems 254Fm (solid line) and 264Fm (dotted line),
which are produced by the reactions 128Sn+126 Sn and 132Sn+132 Sn, respectively.
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Table 4-1: Fusion barriers BTCSM
η are compared with the experimental

surplus of energy ∆Bexp above the Bass barrier.

Reactions BTCSM
η (MeV ) ∆Bexp(MeV )

90Zr +90 Zr→180 Hg 4 0.0+0.5

−0.5

96
Zr +

96
Zr→

192 Hg 6 4.2+1.2
−1.2

90
Zr +

100
Mo→

190
Pb 5 5.1

+1.0
−1.0

96
Zr +

100
Mo→

196
Pb 7 9.5

+1.0

−1.0

94
Mo+

100
Mo→

194
Po 10 16.3

+1.0

−1.0

100
Mo+

100
Mo→

200
Po 7 12.2

+0.5
−0.5

90
Zr +

124
Sn→

214
Th 11 20.3

+4.0

−4.0

96Zr +124 Sn→220
Th 17 26.7

+5.0

−3.0

128
Sn+

126
Sn→

254
Fm 22 -

132
Sn+132

Sn→
264

Fm 30 -

4.2.2 Comparison of driving potentials calculated with different methods

Figs. 4-6 a) and 4-7 a) show the driving potential calculated with the TCSM-method, with the

phenomenological method and with the alternative microscopical method for the systems 180
Hg

and 246Fm, which are produced in the reactions 90Zr +90 Zr and 76Ge +170 Er, respectively.

Here, the nuclei forming the DNS are considered as spherical and the driving potential calculated

with the alternative microscopical method is shown for a temperature T = 1MeV . The driving

potentials are given as a function of the charge Z of the light nucleus of the DNS. We can

observe that the driving potential calculated with the TCSM-method is qualitatively similar to

the driving potentials calculated with the phenomenological and the alternative microscopical

methods.

The phenomenological driving potential, where the shell effects are taken into account only

through the asymptotic binding energies, reveals more structures [73] than the ones calculated

with the TCSM-method or with the alternative microscopical method. Experiments ([28]-[32])

confirm the assumption that during the collision, the individual properties of the colliding nuclei

are conserved and the shell effects play an essential role. For instance, there are local maxima

corresponding to the closed-shell nuclei [28] in the charge and mass distributions of the reaction

52



products. However, in the driving potential calculated with the phenomenological method the

peculiarities of the single-particle spectra of the DNS nuclei are not taken into account explicitly.

The shell effects in the driving potentials calculated with the TCSM-method and the alter-

native microscopical method reflect the influence of peculiarities of the single-particle spectra

near the Fermi surface on the nucleon exchange process. For this reason, these driving potentials

can carry more information about the DNS evolution in η than the driving potential calculated

with the phenomenological method. It is obvious that the position of the initial configuration

ηi defines the evolution direction of the DNS in η. The driving potentials calculated with the

TCSM- and with the alternative microscopical methods have few local minima. The absence

of local minima for some magic nuclei in the dinuclear system can be explained by the shell

structure of the conjugated nucleus and the influence of the neutron subsystem.

The effect of the deformations of the nuclei on the driving potential is presented in Figs.

4-6b) and 4-7b) for the dinuclear systems 180Hg and 246Fm, respectively. Here, the driving

potential calculated within the TCSM and the phenomenological potential are shown.We assume

that the deformations take the effects of polarisation of the nucleus induced by the mean-field

of the other nucleus into account. The potential energy of the DNS with prolate nuclei is

smaller than the potential energy with spherical nuclei (Figs. 4-6a) and 4-7a) ) because the

Coulomb energy becomes larger for spherical nuclei. In this case, the fusion barrier in η gets

smaller than the one obtained with spherical nuclei. For oblate deformations of the nuclei,

the potential energy and the fusion barrier in η are larger than for spherical nuclei. In reality,

some averaging over the orientations of the nuclei has to be carried out in the initial DNS.

The deformation effects produce fluctuations of the value of the fusion barrier in η around the

value obtained for spherical nuclei. In the present version of the TCSM, the intrinsic symmetry

axes of the deformed nuclei lie along the internuclear axis. For arbitrary orientations of the

intrinsic symmetry axes of the deformed nuclei, a more general TCSM [81] should be used.

Calculations with the method suggested in [65] reveal a weak dependence of the potential on

the orientations of the nuclei. In order to completely take into account the deformation effect in

the driving potential calculated with the alternative microscopical method, the single-particle

levels should be taken for deformed nuclei. For the sake of simplicity, we use the single-particle

levels of spherical nuclei in the present calculations. However, the fit of the Fermi surface by the
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Figure 4-6: a) Driving potentials for the system 180Hg as a function of the charge number
Z of the light nucleus of the DNS: potential calculated with the TCSM-method (solid line),
the phenomenological potential (dashed line) and the potential calculated with the alternative
microscopical method for T = 1MeV (dotted line). The nuclei are considered as spherical. The
arrow indicates the reaction 90Zr +90 Zr. b) The same as in a) but with deformed nuclei in
the driving potential calculated with the TCSM- and with the phenomenological methods. The
deformations are taken from Refs. [70, 71]
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Figure 4-7: The same as in Fig. 4-6 for the system 246Fm, which is produced by the reaction
76Ge+170 Er.
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experimental separation energy allows us to partly take the deformation effects into account in

the driving potential calculated with the alternative microscopical method.

In this chapter, we have studied the isotopic dependence of the driving potential of various

heavy DNS using the TCSM-method. The isotopic dependence of the energy threshold for the

complete fusion in mass asymmetry calculated with the TCSM-method agrees with the isotopic

behaviour of the experimental surplus of energy ∆Bexp above the Bass barrier. The similarity

of the driving potentials calculated with the TCSM-method and with the phenomenological

approach is demonstrated. The description of the DNS evolution in η at the touching con-

figuration of the nuclei weakly depends on the method of calculation of the potential energy.

The structures in the driving potentials show the strong influence of the shell effects on the

evolution of the DNS. In chapter 7, we will study the correlation between the distribution of

quasi-fission products and the driving potential.
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Chapter 5
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The present fusion models can be distinguished by the choice of the relevant collective variables

along which fusion mainly occurs. While many models study the fusion in R at a practically

fixed value of η, the DNS model [34] considers the DNS evolution in mass asymmetry by

nucleon or cluster transfers as the main path to the compound nucleus. The DNS model

assumes basically that the neck degree of freedom is fixed in the evolution in η and the nuclei

are hindered from melting together by a variation in the relative distance R. In this chapter, we

study dynamical restrictions for the growth of the neck in the DNS and suggest proper methods

of the calculation of the DNS inertia tensor.

There are various macroscopical and microscopical approaches to calculating the inertia

tensor [82]. The macroscopical approaches (see, for example, [16, 83]) are based on the hydro-

dynamical model of the nucleus. A calculation of the inertia tensor with a theory for quantum

fluid dynamics is suggested in Ref. [84]. By using a random-matrix model to describe the

coupling between a collective nuclear variable and intrinsic degrees of freedom, and with the

help of the functional integral approach, mass parameters are derived in Ref. [85]. In the linear

response theory [86, 87] the inertia tensor is found for fissioning nuclei. The microscopical

approaches mainly use the cranking type expression and perform calculations in different single

particle bases applying adiabatic [40, 88] or diabatic [57] two-center shell models. Difficulties in

the cranking type calculations arise for collective motions with large amplitudes, for example, in

fusion or fission, due to pseudo—crossings or crossings of levels in the single particle spectrum.

Some publications disregard the contributions from the crossings (pseudo—crossings), which
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means a neglect of effects of configuration changes on the mass parameters during the evolution

of the nuclear shape in spite of the fact that the collective inertia is strongly influenced by level

crossings (pseudo—crossings) [89, 90]. In order to overcome this problem, two—body collisions

should be regarded which lead to a width of the single particle levels and an effective reduction

of the level crossing effects. For example, calculations of the nuclear inertia in a generalized

cranking model with pairing correlations yielded masses of about one order of magnitude larger

than the ones without pairing [91].

One of the aims of this chapter is to obtain analytical expressions for mass parameters

using models and methods which include residual interaction effects. In sect. 5.1, the mass

parameters are obtained within the linear response theory, taking the fluctuation-dissipation

theorem and the width of single particle states into account. The same mass parameters are also

derived by Fermi’s golden rule and by smoothing the single particle spectrum in the mean—field

cranking formula. In sect. 5.2, the mass parameters for the relevant collective variables (mass

asymmetry, elongation, neck and deformation parameters) of the DNS and strongly deformed

nuclear systems are evaluated in the two-center shell model with adiabatic and diabatic bases.

5.1 Microscopical inertia

5.1.1 Derivation from collective response function

Let us consider a nuclear system described by a single collective coordinate Q and intrinsic

single particle coordinates xi (with the conjugated momentum pi) and assume the following

effective Hamiltonian [86]

Ĥ(xi, pi,Q) = Ĥ(xi, pi, Q0) + (Q−Q0)F̂(xi, pi, Q0)

+
1

2
(Q−Q0)

2 <
∂2Ĥ(xi, pi, Q)

∂Q2
>Q0,T0 . (5.1)

The shape of the nuclear mean field is changed with the collective coordinate Q that intro-

duces the coupling between Q and the nucleonic degrees of freedom xi. Eq. (5.1) is obtained

by expanding the Hamiltonian to second order in the vicinity of Q0 (local harmonic approx-
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imation). In the second order term the ”nucleonic” part appears only as an average of the

corresponding operator. Consistently with the harmonic approximation, this average is to be

built with that density operator for the nucleons ρ̂qs(Q0) which in the quasi-static picture is to

be calculated with the Hamiltonian at Q0, namely, Ĥ(xi, pi,Q0). The operator ρ̂qs(Q0) is the

canonical distribution for the temperature T0. The coupling term between the collective and

intrinsic motion is proportional to the first order in δQ = Q−Q0 with an operator F̂ given by

the derivative of the mean field with respect to Q in the neighborhood of Q0.

The local motion in the Q variable can be described in terms of the so-called collective

response function χcoll(ω) [86] (see Appendix). In the linear response theory [86], the mass

coefficient for a slow collective motion can be expressed as [86, 87, 92, 93]

M(Q) =
1

2k2
∂2(χcoll(ω))

−1

∂ω2
|ω=0 = (1 +

C(0)

χ(0)
)2[Mcr +

γ2(0)

χ(0)
], (5.2)

where

Mcr =
1

2

∂2χ(ω)

∂ω2
|ω=0 =

1

2

∂2χ′(ω)

∂ω2
|ω=0 (5.3)

is the inertia in the zero-frequency limit of the second derivative of the intrinsic response

function. Mcr can be shown to be similar to the one of the cranking model [86]. Here a

response function χ(ω) for ”intrinsic” motion appears and measures how, at some given Q0

and temperature T0, the nucleonic degrees of freedom react to the coupling term F̂ δQ. The

intrinsic response function χ(ω) = χ′(ω) + i χ
′′

(ω) is written in terms of the reactive χ′(ω)

and dissipative χ
′′

(ω) parts [86]. χ(0) and C(0) are the zero-frequency limit of the intrinsic

response function and stiffness, respectively (see Appendix). For many applications, the value

of C(0)/χ(0) � 1. The additional term γ2(0)/χ(0) in Eq. (5.2) gives a positive contribution to

M where γ(0) is the friction coefficient defined as [86]

γ(0) = −i
∂χ(ω)

∂ω
|ω=0 =

∂χ
′′

(ω)

∂ω
|ω=0 =

1

2T0
ψ

′′

(0). (5.4)

The dissipative part of the intrinsic response function χ
′′

(ω) is connected with the dissipative

part of the correlation function ψ
′′

(ω) through the fluctuation-dissipation theorem [86]

χ
′′

(ω) =
1

h̄
tanh(

h̄ω

2T0
)ψ

′′

(ω). (5.5)
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In the case of an independent particle model, the correlation function ψ
′′

(ω) is expressed as [86]

ψ
′′

(ω) = πh̄
∑

j,k

|Fjk|
2n(εj)[1− n(εk)][δ(h̄ω − εkj) + δ(h̄ω + εkj)]. (5.6)

Here, εkj = εk− εj is the difference of single particle energies, n(εj) are the occupation numbers

and Fjk =< j|F̂ |k > the single particle matrix elements of the operator F̂ . The ψ
′′

(ω) has a

singularity of δ—function type at ω = 0

ψ
′′

(ω) = 2πψ0δ(h̄ω) + ψ
′′

R(ω), (5.7)

with ψ
′′

R
(ω) being regular at ω = 0. ψ

′′

R
(ω) is given by a sum like the one in (5.6) but with the

restriction j 	= k. At j = k, we find the contributions from the diagonal matrix elements

ψ0 =
∑

k

|Fkk|
2
n(εk)[1− n(εk)] = T0

∑

k

∣∣∣∣
∂n(ε)

∂ε

∣∣∣∣
ε=εk

(
∂εk

∂Q

)2
. (5.8)

The last part in (5.8) was derived with a Fermi distribution for the occupation numbers, which

is characterized by the temperature T0. The value of T0 does not effectively go to zero with

decreasing excitation energy because each single particle level has a width due to the two-

body interaction. Indeed at zero excitation energy, the distribution of the occupation num-

bers deviates from a step function at least due to pairing correlations. In order to obtain a

smooth correlation function ψ
′′

(ω), we substitute the δ—functions in Eq (5.6) by the Lorentzian

Γ/[π((h̄ω ± εkj)
2 + Γ2)]. The Lorentzian function with the double single particle width 2Γ is

applied because h̄ω is the transition energy between two single particle states [86]. Then using

Eqs. (5.4)-(5.8), we can write the friction coefficient in the following form

γ(0) = γdiag(0) + γnondiag(0), (5.9)

where

γdiag(0) =
h̄

Γ

∑

k

∣∣∣∣
∂n(ε)

∂ε

∣∣∣∣
ε=εk

(
∂εk

∂Q

)
2

. (5.10)

For smaller temperatures T0 < 2 MeV, which are of interest here, γdiag(0) is much larger than
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γnondiag(0) [86]. The zero-frequency limit of the intrinsic response function defined as [86]

χ(0) = lim
ε→0

+∞∫

−∞

dω

π

χ
′′

(ω)

ω − iε
= lim

ε→0

+∞∫

−∞

dω

h̄π

tanh( h̄ω
2T0

)ψ
′′

(ω)

ω − iε
(5.11)

is expressed as follows

χ(0) = χdiag(0) + χnondiag(0), (5.12)

where

χdiag(0) =
∑

k

∣∣∣∣
∂n(ε)

∂ε

∣∣∣∣
ε=εk

(
∂εk

∂Q

)
2

. (5.13)

With realistic assumptions γdiag(0) � γnondiag(0) and χdiag(0) � χnondiag(0) and neglecting

C(0)/χ(0), we can divide the mass parameter (5.2) as

M =Mdiag +Mnondiag. (5.14)

The contribution of the diagonal matrix elements of F̂ to M are

Mdiag =
(γdiag(0))2

χdiag(0)
=
h̄2

Γ2
∑

k

∣∣∣∣
∂n(ε)

∂ε

∣∣∣∣
ε=εk

(
∂εk

∂Q

)2
. (5.15)

If the single particle widths are properly taken into account, the nondiagonal contributions to

the inertia are [88]

Mnondiag =Mcr = h̄2
∑
k �=k′

|Fkk′ |2

ε
2

kk′ + Γ2
n(εk)− n(εk′)

εk′ − εk
. (5.16)

The main contribution toM is the diagonal partMdiag (e.g., <M
diag

λλ
>∼ 102 <Mnondiag

λλ
> for

the fission of 240Pu [91]), because it dominates for collective variables which are responsible for

changes of the nuclear shape of the system [89, 90, 91, 94]. Note that the calculation of Mdiag

is simpler than Mnondiag. For the case that the pairing residual interaction is regarded and

only diagonal matrix elements in the cranking formula are taken into account, Eq. (5.16) was

obtained with Γ = ∆ (∆ is the pairing gap) in Ref. [91, 95]. Starting with an equation for the
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single particle density matrix extended with an approximate incorporation of particle collisions

in the relaxation time approach, the authors of Ref. [96] derived an expression similar to (5.16)

(with Γ = h̄/τ , τ is the relaxation time) but with a negative sign. This negative sign arises from

the fact that the condition of self-consistency between collective and nucleonic dynamics, which

is important for a correct calculation of the mass parameters, was disregarded in [96]. It was

stressed in [86, 97] that within the linear response theory the diagonal component of the friction

parameter originates from the ”heat pole” of the correlation function ψ
′′

(ω) and vanishes when

the system is ergodic. As shown in Ref. [98], the well necked DNS-type configurations are not

ergodic and stable against chaos. Even at zero excitation energy, the level crossings at the

Fermi surface lead to considerable mass flow [89, 90, 94] and the diagonal component of the

correlation function ψ
′′

(ω) (or mass parameter) does not vanish.

Besides the mass and friction coefficients, the diffusion coefficients Dkl (k, l = (Q,P )) must

also have a component diagonal in the matrix elements of F̂ because they are connected with

correlation functions. For example, the diffusion coefficient in momentum is defined as [86]

DPP =
1

2
ψ

′′

(ω = 0) = T0γ(0). (5.17)

5.1.2 Derivation from Fermi’s golden rule

By setting ĤI = (Q − Q0)F̂(xi, pi,Q0) as perturbation (see Eq. (5.1)), the decay rate of a

collective state |n > with energy En to the collective state |m > with energy Em is given in

lowest order according to Fermi’s golden rule

w(n→m+ h̄ω) =
2π

h̄
| < m|Q−Q0|n > |

2

×
∫
d(h̄ω)| < h̄ω|F̂ |0 > |2δ(En −Em − h̄ω)ρqs(h̄ω). (5.18)

Here, the integral is taken over the final states of the intrinsic system with the density ρqs.

|0 > and |h̄ω > are the intrinsic states associated with the collective states |n > and |m >,

respectively.
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The half-decay width is obtained from Eq.(5.18) as

Γn = h̄
∑

m

w(n→m+ h̄ω). (5.19)

With the fluctuation-dissipation theorem for small temperatures we have [99]

| < h̄ω|F̂ |0 > |2ρqs(h̄ω)d(h̄ω) =
2

π

h̄ω

2
R(ω)dω (5.20)

with the relaxation function defined as R(ω) = χ
′′

(ω)/ω. Using the properties of the response

function χ
′′

(ω) [86] and a Taylor expansion

R(ω) =
χ

′′

(ω)

ω
=

1

ω

[
χ

′′

(ω = 0) +
∂χ

′′

(ω)

∂ω

∣∣∣∣∣
ω=0

ω +
1

2

∂2χ
′′

(ω)

∂ω2

∣
∣
∣
∣
∣
ω=0

ω
2 + ...

]
, (5.21)

we calculate the integral in (5.18). We then replace w(n → m + h̄ω) in (5.19) by (5.18).

Considering the standard formula for mass Mn (En 	= Em)

Mn =
h̄
2

2
(
∑

m

| < m|Q−Q0|n > |2[En −Em])−1, (5.22)

which is obtained from the relation Mn = h̄2(< n|[q̂, [q̂, ̂H]]|n >)−1[94], we obtain by setting

Γ = Γn and M =Mn

M =
h̄

Γ

∂χ
′′

(ω)

∂ω
|ω=0 =

h̄

Γ
γ(0). (5.23)

Large temperatures in (5.20) effectively lead to a temperature dependence of Γ in (5.23). Since

γ(0) in Eq. (5.9) contains the terms with the diagonal matrix elements of the operator F̂ , the

mass parameter M also has the diagonal component Mdiag (5.15). So, the contributions to the

mass parameter can be again classified as those with diagonal and nondiagonal matrix elements,

respectively.

That the mass parameter is proportional to the friction coefficient (see Eq. (5.23)), has an

analogy in the hydrodynamic model. For multipole moments ν of the nucleus with ν > 1, the

63



following ratio in the limit of an irrotational flow was derived in [100]

M irr
ν /γirrν =

3A2/3

8π(2ν + 1)(ν − 1)r0

1

β
, (5.24)

where β is the coefficient of the two-body viscosity and r0 = 1.2 fm.

5.1.3 Derivation from the mean—field cranking formula

Using the single particle spectrum εα and the corresponding wave functions |α >, one can

obtain the mass parameter with the cranking formula [94]

M
cr = h̄

2
∑

α�=β

| < α|
∂

∂Q
|β > |2

n(εα)− n(εβ)

εβ − εα
. (5.25)

In reality the Hamiltonian of the system contains a residual two-body interaction between the

nucleons in addition to the mean field. The residual coupling distributes the strength of single

particle states over more complicated states. This spectral smoothing has the effect that the

sum over α and β appearing in (5.25) also includes diagonal terms with α = β. Let us prove

this statement.

The Eq.(5.25) can be rewritten as

Mcr = h̄2
∑
α �=β

∫
dε1δ(ε1 − εα)

∫
dε2δ(ε2 − εβ)| < ε1|

∂

∂Q
|ε2 > |2

n(ε1)− n(ε2)

ε2 − ε1
. (5.26)

Next we use the following replacements

∫
dε1g(ε1)→

∑
k1

,

∫
dε2g(ε2)→

∑

k2

, (5.27)

δ(ε− εk)→ ρk(ε) =
1

2π

Γ

(ε− εk)2 + (Γ/2)2
(5.28)

and the approximation

D2 | < k1|
∂

∂Q
|k2 > |2 ≈ |Fk1k2 |

2. (5.29)

Here, D = 1/g is the average energy distance between single particle states. We then express
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the mass (5.26) as

Mcr =
h̄2Γ2

4π2

∑

α �=β,k1,k2

|Fk1k2 |
2

[ε2
αk1

+ (Γ/2)2][ε2
βk2

+ (Γ/2)2]

n(εk1)− n(εk2)

εk2 − εk1
. (5.30)

The energy spreading of the single particle states is taken into account in Eq.(5.30). A line

broadening happens if collisions of particles and holes with the background result in single

particle and single hole strength functions that are concentrated around the original single

particle energies. The quantity Dρk determines the average strength function for a particle in

state k [101]. In the limit εk1 = εk2 = εk, for εα ≈ εk and εβ ≈ εα, i.e. when two neighboring

levels near the level k are considered, and 8/π2 ≈ 1, Eq.(5.30) leads to Eq.(5.15). Thus, diagonal

terms in the mass parameters appear because of the finite width of the single particle levels

due to the residual interaction.

5.2 Results of the calculations

5.2.1 The adiabatic two-center shell model

Since collisions above the Coulomb barrier are discussed, we firstly consider spherical nuclei

with βi = 1 and then analyse the deformation effects.

In order to calculate the width of the single particle states, we use the expression [86, 102]

Γk =
1

Γ0

(εk − εF )
2 + (πT0)

2

1 + [(εk − εF )
2 + (πT0)2]/c2

. (5.31)

Here, εF is the Fermi energy. Both parameters Γ0 and c are known from experience with the

optical model potential and the effective masses [86]. Their values are in the following ranges:

0.030MeV−1 ≤ Γ0
−1
≤ 0.061MeV−1, 15MeV≤ c ≤ 30MeV. The quadratic dependence of the

numerator can be obtained from the collision term in the Landau theory of Fermi liquid [103]

and has been also verified within a microscopic approach based on an effective interaction of

Skyrme type [104]. Since each single particle state has its own width, Eq. (5.15) is generalised

as (Qi = λ, η, ηZ , ε, β1, β2):

M
diag

ij = h̄2
∑

k

fk

Γ2

k

∂εk

∂Qi

∂εk

∂Qj

. (5.32)
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Figure 5-1: Dependence of the mass parameter Mεε (lower part) and of the shell correction
δU (upper part) on ε for the system 110Pd +110 Pd at λ = 1.6. In the calculation of Mεε, an
excitation energy of 30MeV of the DNS and adiabatic single-particle states are used. The mass
parameter MWW

εε calculated in the Werner-Wheeler approximation is presented by a dashed
line in the lower part. Units: m fm2 with m = nucleon mass.
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For the Fermi occupation numbers n(εk), the function

fk = −
dnk

dεk
=

1

4T0
cosh−2

(
εk − εF

2T0

)
(5.33)

has a bell-like shape with a width T0 and is peaked at the Fermi energy εF .

Various calculations of the mass parameter for the motion in λ were carried out with expres-

sions similar to Eq. (5.32), for example in [88, 91, 95]. When the system adiabatically moves

towards the compound nucleus, the value of Mλλ increases approximately by a factor 10—15

in our and other calculations. In this section, we concentrate on the calculation of the mass

parameter Mεε for the motion of the neck to test whether the DNS exists long enough with

a relatively small neck. The dependence of Mεε on ε is presented in Fig. 5-1 for the system

110Pd+110Pd at λ = 1.6, which corresponds to the touching configuration in this symmetric

reaction. The obtained values of Mεε have the same order of magnitude as in [88], where the

pairing correlations were taken into account. The value of Mεε increases by a factor 2.5 when

the system falls into the fission-type valley [42]. This valley is observed in the adiabatic poten-

tial energy surface for ε = 0− 0.2 and λ = 1.6− 1.7. This increase reflects the decrease of the

shell correction δU with ε towards ε → 0. Smaller values of δU correspond to larger masses

because the mass parameter is proportional to some effective level density geff at the Fermi

energy. The expression (5.15) could be written asMdiag
≈

h̄2

Γ2

〈
∂εk
∂Q

〉
2

aver
geff . The effective level

density geff is in inverse proportion to the shell correction δU [95].

In order to obtain a nuclear shape for the touching configuration of the nuclei similar to the

one obtained in the DNS model, the neck parameter ε should be set about 0.75 [42]. With this

value of ε, the neck radius and the distance between the centers of the nuclei are approximately

equal to the corresponding quantities in the DNS.

For the parameter c in Eq. (5.31), we use the ”standard” value 20 MeV since the masses

(5.32) depend only weakly on this parameter. Setting the parameter Γ−1
0

= 0.045MeV−1 in

(5.32) and comparing our results with MWW
ij obtained in the Werner-Wheeler approximation

for a touching configuration of the nuclei with the excitation energy 30MeV (T0 = 1.3MeV ),

we find Mλλ = MWW
λλ

, Mεε ≈ (20 − 30)MWW

εε
, Mλε ≈ 0.4MWW

λε
and Mλε/

√
MλλMεε � 1,

practically independent of the mass number of the system. Therefore, we can conclude that
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the microscopical mass parameter of the neck is much larger than the one in the Werner-

Wheeler approximation, and the nondiagonal component Mλε is small. Since at the touching

configuration the slope of the single-particle levels is small and changes slowly with decreasing

elongation λ, the microscopical mass parameter in λ is close to its smooth, hydrodynamical

value. In contrast, a large amount of internal reorganisation occurs at the level crossings with

decreasing ε and leads to a large neck inertia of the initial DNS. So, the value of Mεε is larger

than the one in the hydrodynamical model, due to large values of ∂εk/∂ε. The restriction

for the growth of the neck may be understood by analysing the single particle spectrum as a

function of ε [42]. Well necked-in shapes with large ε have single particle spectra with a good

shell structure. The levels show a larger number of avoided level crossings with decreasing ε.

The time-dependence of the neck parameter calculated with the microscopical and Werner-

Wheeler mass formulas are compared in the upper part of Fig. 5-2. The lower part of Fig. 5-2

shows trajectories in the (ε, λ)-plane, calculated with microscopic and Werner-Wheeler masses.

An adiabatic potential energy surface is used in all these calculations [42]. Since there are no

suitable barriers at smaller values of λ and ε in the adiabatic potential which hinder a growth

of the neck, the neck parameter and system length decrease steadily to smaller values, faster in

the case with the Werner-Wheeler masses and much slower with the microscopical masses. The

experiments on fusion of heavy nuclei cannot be explained as a melting with increasing neck

together with a decreasing λ in an adiabatic potential [42]. It seems that there is an intermediate

situation between the adiabatic and diabatic limits for the collective motion. The study of

the transition between diabatic and adiabatic regimes gives a potential energy surface which

contains quite high barriers for the motion to smaller λ and ε [35, 66]. Therefore, the dynamical

calculations with the adiabatic potential energy show a maximal possible growth of the neck.

Since the moment of inertia is large in heavy nuclear systems, we disregard the dependence

of the potential energy on the angular momentum in dynamical calculations. Indeed, in the

fusion reactions with massive nuclei the low angular momenta (< 20 h̄ ) only contribute to

the evaporation residue cross sections. The isotopic composition of fusioning nuclei forming

a DNS is chosen by the condition of a N/Z-equilibrium in the system, and ηz follows η [42].

In processes developing in shorter times, ηz could be considered as an independent collective

variable.
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Figure 5-2: Upper part: Time-dependence of the neck parameter ε for the system 96Zr+96 Zr

calculated with microscopical (solid curve) and Werner-Wheeler (dashed curve) mass parame-
ters. Lower part: Trajectories in the (λ, ε)-plane, calculated for the system 136Xe +136 Xe

with microscopical mass parameters (solid curve) and with Werner-Wheeler mass parameters
(dashed curve). The end points of the solid and dashed curves in the drawing are at time
t = 2× 10−21s and t = 2× 10−22s, respectively.
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Figure 5-3: Mass parameter Mεε as a function of deformation β, calculated for the system
110Pd +110 Pd at the touching configuration with excitation energy 30MeV and adiabatic
single-particle states. Units: m fm2 with m = nucleon mass.
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As a result of Fig. 5-2, we find that the microscopical mass parameters keep the system

near the entrance configuration for a sufficient long time comparable with the time of reaction

even in an adiabatic potential. Therefore, this situation justifies the assumption of a fixed neck

as we assume it in the DNS model [34]. When the DNS configuration exists a long time, then

thermal fluctuations in the mass asymmetry coordinate play the essential role in the fusion

process. Indeed, these fluctuations are responsible for the fusion in the DNS model. Thus, the

dynamical restriction for the growth of the neck can be caused partly by a large microscopical

mass parameter for the neck motion, partly by the potential energy surface intermediate between

diabatic and adiabatic limits.

In the adiabatic two-center shell model, the mass parameter Mεε slightly increases with the

deformation parameters βi of the two nuclei in the symmetric system 110Pd+110Pd as shown in

Fig. 5-3. The small variation of Mεε is due to the shell structure. Therefore, the relatively large

value of Mεε is a general result for collisions of both spherical and deformed nuclei. Fig. 5-4

shows the mass parameter Mεε at the touching configuration of symmetric systems η = 0 with

βi = 1 as a function of the mass number A = A1 + A2 = 2A1. The mass Mεε increases with

the mass of the system. It slightly decreases with increasing mass asymmetry of the DNS.

5.2.2 The diabatic two-center shell model

Let us now consider the calculation of the mass parameters (5.32) with the diabatic single

particle energies obtained with the method of maximum-symmetry in the diabatic two-center

shell model [35, 57]. In the diabatic motion, the nucleons do not occupy the lowest single

particle states as in the adiabatic case, but remain in their diabatic states. In comparison to

the calculations with the adiabatic single particle levels, the numerical procedure with diabatic

single particle levels is much easier because each level has a complete set of quantum numbers

and the drawing of the levels as a function of a collective variable is simpler and unique.

Due to the nonzero width of the single particle states, the distribution of single parti-

cle strength over more complicated states is a Lorentzian distribution ρk(ε) as introduced in

Eq. (5.28) instead of the δ-function δ(ε − εk) [86]. The occupation number ñ(εk) of a state k

with energy εk and the corresponding value of f̃k are obtained, respectively, from functions
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Figure 5-4: Mass parameter Mεε as a function of the mass number A = A1 + A2 = 2A1 for
symmetric systems (η = 0) calculated with adiabatic single-particle states for βi = 1, λ = 1.6,
and ε = 0.75. Units: m fm2 with m = nucleon mass.
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n(ε) and dn(ε)/dε calculated with zero width of the levels

ñ(εk) =
∫
n(ε)ρk(ε)dε, (5.34)

f̃k = −
∫

dn(ε)

dε
ρk(ε)dε. (5.35)

The Lorentzian distribution increases the diffuseness of the Fermi-distribution. The Fermi

distribution which is given at the touching configuration of the nuclei in the DNS is destroyed

if the further motion of the system runs diabatically. To treat the diabatic case, we use the

following function n(ε) for an arbitrary configuration of the system

n(ε) =
N∑
l=0

al (ϑ(ε− εl)− ϑ(ε− εl+1)) , (5.36)

where ϑ(x) is the Heavyside’s function and εl the energy of single particle state l with the

occupation number al. Here, the numbers l = 0, ...,N count the single particle states in the

region of the Fermi level. The values ε0 and εN+1 are the low and high limits of the single

particle energies. For lower and higher energies, the occupation numbers are one and zero,

respectively. Therefore, we assume a0 = 1 and aN = 0 in (5.36). The derivative dn(ε)/dε is

expressed as

−

dn(ε)

dε
= (1− a1)δ(ε− ε1) +

N−1∑

l=2

(al−1 − al)δ(ε− εl) + aN−1δ(ε− εN ). (5.37)

We then obtain ˜fk with (5.35) as follows

˜fk = (1− a1)ρk(ε1) +
N−1∑

l=2

(al−1 − al)ρk(εl) + aN−1ρk(εN ). (5.38)

In the calculations we assume the same average width for each Lorentzian ρk(ε). The diabatic

occupation numbers al are fixed at the touching configuration of the system using a Fermi

distribution for a smaller temperature T ∗
0

< T0. The value of T ∗
0

is chosen in such a way

that the occupation numbers ñ(εk) (5.34) and the values of ˜fk (5.35) obtained at the touching

configuration of the nuclei, using either the exact expresions (Fermi distribution and (5.33)) or
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the approximate expressions (Eqs. (5.36) and (5.37)), are nearly equal in both cases.

Similar results as in the adiabatic two-center shell model are obtained. The mass parameters

Mλλ and Mεε depend weakly on the mass asymmetry η and on the deformations β of the nuclei

(β = β1 = β2 for 110Pd+110Pd) at the touching configuration. This result is presented in

Fig. 5-5. One can observe a minimum of Mλλ as a function of β in the reaction 110Pd+110Pd

around the ground state deformation of 110Pd (β ≈ 1.2). Since we regard the widths of single-

particles states, the mass parameters depend more smoothly on the mass asymmetry η than

the mean field cranking masses. In comparison to Ref. [84], where the hydrodynamical-type

treatment was used, the shell effects are here more transparent in the present consideration

because all peculiarities of the single particle spectra are taken into account. Let us consider

the fragmentation 86Kr +134 Ba (η = 0.2) in the system 220U where the number of neutrons

in the fragments is close to the magic numbers 50 and 82, respectively, and the single particle

levels have a smaller slope with respect to λ than in the neighbouring combinations. We find a

smaller contribution to Mλλ from M
diag

λλ
and a local minimum in the dependence of Mλλ on η

(Fig. 5-5). For η < 0.6, the dependence of the mass parameter Mλλ on η is consistent with the

results of Ref. [84]. The shape parametrisation of the TCSM is not appropriate for η > 0.7.

Therefore, we cannot calculate Mεε at the moment for such large mass asymmetries, where a

strong increase of Mεε with η is expected in accordance with Ref. [84].

The mass parameter Mεε increases about two times with decreasing ε from 1.0 to 0.5 or

with increasing neck as shown in Fig. 5-6 and depends weakly on the mass number A. In the

reactions 110Pd+110Pd and 48Ca+172Hf, which lead to the same compound nucleus 220U, the

difference between the corresponding values of Mεε becomes larger for small values of ε. Such a

behaviour correlates with the fact that the diabatic contribution to the potential energy grows

faster with decreasing ε in symmetric configurations than in asymmetric ones [35].

For fixed ε = 0.75, the mass Mλλ grows with decreasing elongation λ on average as shown

in Fig. 5-6 and is 5 times larger than the reduced mass at λ ≈ 1.3. The dependence of Mλλ

on λ has fluctuations around an average upwards trend which are more pronounced with an

increasing total mass number A of the system (Fig. 5-6) and at smaller temperatures (Fig. 5-7).

The average trend is connected with an increase of the average slope of the single particle levels

with decreasing λ or ε and with the enlarged number of crossings between the diabatic levels.
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Such a behaviour correlates with the diabatic contributions to the potential energy [35]. The

fluctuations arise from the factor
˜

fk /Γ
2

k
in Eq. (5.32) and are related to the increasing number

of crossings between the single particle levels near the Fermi level with decreasing λ [35].

The choice of the width of the single particle levels is crucial for the value of Mdiag in

both the diabatic and adiabatic cases within a reasonable variation. If instead of Γ−1
0

= 0.045

MeV −1, the value of Γ−1
0

is taken as 0.03 MeV −1at the lower limit , the value of Mεε becomes

2.25 times smaller, but remains larger than MWW

εε
by about one order of magnitude. For larger

temperatures, the average width Γ increases and the function
˜

fk /Γ
2

k
becomes smoother. The

mass parameter Mεε depends on temperature T0 mainly due to the width Γk of the single-

particle levels ( Γk ∼ T
2

0
). The value of Mεε decreases with T−4

0
. One- and two-body inter-

actions [96] contribute to the nondiagonal and diagonal parts of the mass parameter, respec-

tively. Whereas the one-body contribution to mass (nondiagonal part) is relatively insensitive

to the temperature of the system, the two-body contribution to mass (diagonal part) increases

strongly with decreasing temperature. The two-body interaction is considered in our calcu-

lations using the width of the single-particle levels [86]. So, we can observe in Fig. 5-7 that

Mdiag
εε (T0 = 1MeV )/Mdiag

εε (T0 = 1.5MeV ) ∼ 5 on average for the values of ε = 0.5 − 1. We

found that the contribution of the diagonal part Mdiag
εε to Mεε is the largest at quite a high

excitation energy of 30MeV (T0 = 1.3MeV ) of the DNS in fusion reactions. For comparison,

the excitation energies of the initial DNS are smaller than 20MeV (T0 < 1.0MeV ) in Pb− and

Bi− based cold fusion reactions. Hot fusion reactions of heavy nuclei have excitation energies

of the initial DNS smaller than 40MeV (T0 = 1.5MeV ) and a rapid decrease of the survival

probability of the compound nucleus with increasing excitation energy. Finally, we should stress

that the mass parameterMεε remains always much larger (e.g., 20−30 times for T0 = 1.3MeV )

in fusion reactions than the mass calculated with the hydrodynamical Werner-Wheeler approx-

imation for T0 = 1− 1.5MeV .

The mass parameters at the touching configuration of the nuclei are the same in the adia-

batic and diabatic descriptions because the single particle levels and occupation numbers are

practically the same in these two limits. It is known that the mass parameters are smaller in

the diabatic case for a zero width of single particle levels than in the adiabatic case [57]. We

found values for the mass parameters Mλλ andMεε within the diabatic TCSM which are closer
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Figure 5-5: Upper part: Mass parameters Mλλ (solid line) and Mεε (dotted line) as functions
of mass asymmetry η at the touching configuration for DNS which leads to the same compound
nucleus 220U . The value of the neck coordinate is ε = 0.75, and the excitation energy of the
DNS is 30MeV . The calculation is done with spherical nuclei. Lower part: The same as in the
upper part, but as a function of deformation β for the reaction 110Pd+110Pd (η = 0). Diabatic
single-particle states are used. Units: m fm2 with m = nucleon mass.
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to the ones obtained in adiabatic calculations because we took the width Γk of single-particle

states into consideration. This is observed in Figs. 5-1 and 5-6 comparing the values of Mεε

at the touching configuration of the nuclei for the reaction 110Pd +110 Pd. Due to the effect

of the width of the single-particle states, the occupation probabilities for single-particle levels

with zero widths are distributed over more levels. This effect partially destroys the difference

between the diabaticity and adiabaticity at crossings (or pseudo-crossings) of the single-particle

levels. We want to stress that the differences between the diabatic and adiabatic single-particle

levels appear only near the crossing points. Moreover, the distribution of the diabatic occupa-

tion numbers ñ(εk) and the derivatives ˜fk approaches the ones obtained in the adiabatic case

for fixed values of ε, λ and excitation energy of the system (Fig. 5-8). Since we showed the

similarity of the data obtained with adiabatic and diabatic levels using the same width, we can

use diabatic single particle states in further calculations of mass parameters in order to simplify

the numerical procedure.

The obtained mass parameter for the neck degree of freedom is much larger than the one

obtained in the hydrodynamical model with the Werner-Wheeler approximation. By applying

the microscopical mass parameters we find a relatively stable neck during the time of reaction.

In addition, a large energy threshold due to the diabatic (structural) forbiddenness effect [35, 36]

hinders the motion to smaller internuclear distances. Therefore, the DNS configuration exists

long enough, and thermal fluctuations in the mass asymmetry coordinate could develop and

lead to fusion and quasifission, which are the essential reactions in the DNS concept.
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Figure 5-6: Upper part: Mεε as a function of the neck coordinate ε at the touching configuration
for the reactions: 96Zr+96 Zr (solid line), 110Pd+110 Pd (dashed line), 136Xe+136Xe (dotted
line) and 48Ca +172 Hf (dashed-dotted line). The excitation energy of the DNS in these
reactions is 30MeV . Lower part: The same as in the upper part, but for Mλλ as a function
of the elongation λ. Diabatic single-particle states are used. Units: m fm2 with m = nucleon
mass.
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Figure 5-7: Mass parameter Mεε as a function of ε at the touching configuration in the
110Pd +110 Pd reaction for temperatures T0 = 1MeV (solid line) and 1.5MeV (dashed line).
Diabatic single-particle states are used. Units: m fm2 with m = nucleon mass.
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Figure 5-8: Derivatives
∼

f
k
of the adiabatic (solid line) and diabatic (dashed line) neutron occu-

pation numbers
˜

n (εk) as a function of the single-particle energies εk for the system
110Pd+110Pd

which moves in the neck coordinate ε. The nuclei are in the touching configuration (λ = 1.6)
and are considered as spherical. The value of ε is 0.52.
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Chapter 6
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In most reactions studied in chapter 3 [35] the diabatic potential has a minimum in the neck

parameter ε around ε = 0.65—0.85. Due to the large inertia and friction coefficient in the neck

coordinate ε obtained in chapter 5 [43], the DNS configurations with fixed neck parameters have

a long lifetime in comparison to the reaction time. In contrast to the Ref. [42], where the fusion

probability through the fission-type valley with small ε was considered, fusion probabilities PCN

obtained for fixed large ε depend correctly on the initial value of η in the entrance channel [34].

As in Ref. [42], the adiabatic treatment of fusion in λ yields fusion probabilities which are

considerably overestimated in comparison to the experimental data although a fixed large neck

ε is considered. The reason of this overestimate is clearly seen in Fig. 6-1, where the adiabatic

potentials for different fragmentations leading to the same compound nucleus 246Fm are shown

as a function of λ at ε = 0.75. In contrast to experiment the hindrance of fusion in these

potentials is practically absent (PCN ≈ 1) because there is no fusion barrier for the motion

to smaller elongations λ. The diabatic effects in the entrance phase of the collision studied in

chapter 3 strongly hinder the motion of the system to smaller elongations λ. The study of the

transition from the diabatic potential to the adiabatic one in the motion of the system in λ

during the lifetime of the dinuclear system allows us to conclude whether the fusion is possible

in the elongation coordinate.
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Figure 6-1: Adiabatic potentials as a function of λ calculated within the TCSM for differ-
ent combinations leading to the same compound nucleus 246Fm. The nuclei are considered as
spherical and the neck parameter ε = 0.75. The crosses denote the touching configurations.
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It will be interesting to study the competition between two possible fusion channels. The

first one (λ—channel) describes the transition of two nuclei into the compound nucleus with a

decreasing elongation and assumes a fixed mass asymmetry η during the fusion. The second

channel, named η—channel, describes the evolution of the DNS to the compound nucleus as a

change of the mass asymmetry η by nucleon transfer from the light nucleus to the heavy one

at the touching configuration of the nuclei. Nuclei are considered as spherical with ε = 0.74

which corresponds to realistic shapes of the DNS for λ =1.5—1.6. The comparison of the fusion

probability calculated in both channels will allow us to find the favorable fusion channel.

In the present chapter we will study whether the system has time for destroying the ”mem-

ory” about the diabatic hindrance [35, 36]. This time is necessary to reorganize the density of

the system for the transition from the initial diabatic potential Vdiab(λ) to the adiabatic one

Vadiab(λ). The time dependence of the transition of the potential can be related to the effective

relaxation time τ(λ, t) [105, 106]

V (λ, t) = Vdiab(λ) exp(−

t∫

0

dt

τ(λ, t)
) + Vadiab(λ)[1− exp(−

t∫

0

dt

τ(λ, t)
)]. (6.1)

A time-dependent dynamical potential V (λ, t) was originally introduced in Refs.[105, 106]

from a phenomenological ansatz and applied to study the effects of local equilibrium in dissi-

pative heavy-ion collisions. Eq. (6.1) may be rewritten as

V (λ, t) = Vadiab(λ) +∆Vdiab(λ, t) (6.2)

with ∆Vdiab(λ, t) = (Vdiab(λ) − Vadiab(λ)) exp(−
t∫

0

dt
τ(λ,t)). The additional part ∆Vdiab(λ, t) can

be microscopically obtained from the diabatic excitation of particle-hole states

∆Vdiab(λ, t) ≈
∑

α

εdiab
α

(λ)[ndiab

α
(λ, t)− nadiab

α
(λ)], (6.3)

where the εdiab
α

(λ) are diabatic single—particle energies as a function of the elongation λ of

the TCSM. The adiabatic occupation numbers nadiab
α

(λ) vary with λ according to a Fermi

distribution with a temperature T (λ) =
√
E∗(λ)/a (a = A/12MeV −1), where the excitation

energy E∗(λ) is determined from total energy conservation. The exponential factor in (6.1) is
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due to the dependence of the diabatic occupation probabilities ndiab
α

on time expressed by the

relaxation equations [51, 52, 57]

dndiab
α

(λ, t)

dt
= −

1

τ(λ, t)
[ndiabα (λ, t)− nadiabα (λ)], (6.4)

which is known in the relaxation-time approximation. Due to the residual two-body inter-

actions, the diabatic occupation probabilities approach a local (fixed λ) equilibrium with an

average relaxation time

τ(λ, t) =
2h̄

< Γ(λ, t) >
. (6.5)

The factor 2 assumes that two subsequent collisions are sufficient to establish equilibrium for

fixed values of the collective variable λ (local equilibrium). Here, we use a minimal value of

this factor (or minimal possible value of τ) in comparison to Refs. [51, 52, 57] where this factor

was chosen as 3—4. From the (6.1) it is clear that the effective time τ necessary to reorganize

the densities of the system corresponds to a mean value of various relaxation times associated

with the shape degrees of freedom of the system. This effective relaxation time τ is larger than

the average single-particle decay time ( h̄

<Γ>
) due to the effect of a self-consistency between

collective and intrinsic degrees of freedom [86, 107]. The width in Eq. (6.5)

< Γ(λ, t) >=
∑

α

ndiab
α

(λ, t)Γα(λ)/
∑

α

ndiab
α

(λ, t) (6.6)

is an average width of the particle-states above the Fermi level (ndiab
α

= ndiab
α

for εdiab
α

> εF )

and of the hole-states under the Fermi level (ndiab
α

= 1− ndiab
α

for εdiab
α

≤ εF ).

For the widths Γα, the expression (5.31) is used. In the calculations we take the standard

value c=20 MeV and consider the cases with two extreme values of Γ−1
0

: 0.030MeV
−1and

0.061MeV
−1. The results depend weakly on the value of the parameter c. From (5.31), one

can see that for very large free energies ε
diab

α
− εF the broadening of single-particle widths

due to intrinsic excitation energy of the system plays no essential role in contrast to the case

when the excited system is near the equilibrium state [108]. Although one may define a local

excitation energy during the decay of the diabatic potential to the adiabatic one, the concept

of temperature is less meaningful as the system is not locally equilibrated or thermalized [109].
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More detailed investigations are required to clarify these points. In the calculations, we do not

consider thermal effects in the values of Γα.

The adiabatic potential energy Vadiab is calculated using the expression (3.2), but taking

into account the dependence of the shell correction and the pairing correction on the excitation

energy E∗(λ). Shell effects are damped exponentially δUshell = δUshell(E
∗ = 0) exp(−ζE∗)

if the system is excited with the excitation energy E∗. The parameter ζ is chosen as ζ−1 =

5.48A
1

3 /(1 + 1.3A−
1

3 ) MeV [110]. The pairing corrections are taken as follows δUpair = 0

for E∗ ≥ Ec and δUpair=δUpair(E∗ = 0)[1 − E∗/Ec]2 for E∗ < Ec [78] with Ec = 10MeV .

We neglect the dependence of potential energy on the angular momentum in the reactions

considered [18, 20, 22, 34, 38] because in fusion reactions with heavy nuclei only low angular

momenta (< 20− 30 h̄) contribute [78, 111].

The potential energy of the DNS in the touching configuration of the nuclei was calculated

as a function of the mass asymmetry η within the adiabatic TCSM because the diabatic effects

are very small near this configuration [35]. The diabatic potential practically coincides with the

adiabatic one in the touching configuration of the nuclei. Therefore, the values of the fusion

barrier in the η-channel and the quasi-fission barrier are practically independent of time. Indeed,

the motion in η proceeds with nucleon exchanges between the levels near the Fermi surfaces of

the DNS nuclei. For smaller elongations (λ < λt) the diabatic potential is considerably higher

than the adiabatic potential. As shown in Refs. [35, 36], the diabatic potential measures the

structural forbiddenness which reflects the action of the Pauli principle. For the motion in

η at the touching configuration of the nuclei, the structural forbiddenness is absent and thus

diabatic contributions to the potential energy are negligible.

In order to study the competition between the fusion channels in λ and η, we use the fusion

rate Λλ
fus(t) (Λ

η
fus(t)) through the inner fusion barrier Bλ

fus (B
η
fus) in λ (η) and the quasi-fission

rate Λλ
qf (t) to calculate the fusion probability in λ—channel (η—channel)

P
λ(η)
fus =

t0∫

0

Λ
λ(η)
fus (t)dt, (6.7)
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where the lifetime t0 of the DNS is obtained with the condition

t0∫

0

[Λλ
fus(t) + Λη

fus(t) + Λλ
qf(t)]dt = 1. (6.8)

The rate of probability Λλ
qf (t) through the external barrier in λ determines the quasi-fission

process (the decay of the system). The height Bλ
qf of this barrier monotonically decreases

with the mass asymmetry of the DNS because the Coulomb repulsion increases with decreasing

η and leads to very shallow pockets in the nucleus-nucleus potential for the near symmetric

configurations. Therefore, the quasi-fission probability for a symmetric and near symmetric

DNS is much larger than for an asymmetric one. The reactions considered in this chapter are

symmetrical or near symmetrical and, correspondingly, their initial DNS configurations are in

or near the minimum of the potential energy of the systems as a function of λ and η. In this

case the main contribution to the quasi-fission channel comes from the initial or near initial

configurations which have approximately the same quasi-fission barrierBλ
qf . Indeed, in reactions

with heavy nuclei the experimental data do not show relaxation in η and have their maximal

yields of the quasi-fission products near the initial DNS [112, 113]. All these facts allow us

to calculate the quasi-fission rate for the initial DNS with a Kramers-type expression. It was

proved in calculations with the multidimensional Fokker-Planck equation that the use of the

value Bλ
qf for the initial DNS is a good approximation even for asymmetric reactions [34]. The

quasi-fission decay process in λ determines the lifetime of the DNS mainly because the barrier

Bλ
qf is smaller than the barrier Bη

fus in η. The lifetimes t0 obtained for the reactions considered

are comparable with the experimentally extracted characteristic fusion times of 10−21− 10−20s

[114]. Since the effect of the transient times for stationary rates of probability over the fusion

and quasi-fission barriers is weak [34] and their contribution is of the order of the accuracy of the

calculation of the barrier heights, we use the one-dimensional Kramers expression [115] (KrΛj

i ,

i =”fus” or ”qf” and j =”λ” or ”η”) which is a quasi—stationary solution of the Fokker-Planck

equation for the corresponding rate of probability

KrΛj

i =
ωj

2πωB
j

i



√
(
Γ

2h̄
)2 + (ωB

j

i )2 −
Γ

2h̄


 exp(−

B
j
i

T (λt)
). (6.9)
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Here, Bj
i denotes the height of the fusion barriers Bλ

fus(t) and B
η
fus, and quasi-fission barrier

Bλ
qf . The values of Bη

fus and Bλ
qf are practically independent of time. The initial DNS of

the reactions considered here are in or near the minimum of the total potential energy of the

system as a function of λ and η. Moreover, they are in thermodynamic equilibrium because

the diabatic and adiabatic potentials practically coincide. The temperature T (λt) is calculated

using the expression T (λt) =
√
E∗(λt)/a where λt is the elongation of the touching nuclei, i.e.

of the initial DNS. In the calculations we assume that the excitation energy of the initial DNS

is E∗(λt)=30 MeV in all reactions considered. In (6.9), ωB
j

i is the frequency of the inverted

harmonic oscillator approximating the potential in the variable j on the top of the fusion or

quasifission barriers Bj

i , and ωj is the frequency of the harmonic oscillator approximating the

potential in the variable j for the initial DNS. The frequencies ωB
j

i and ωj are calculated using

the absolute values of the second derivative of the potential with respect to the variable j (on

the top of the barrier Bj

i and for the initial DNS, respectively) as well as the corresponding

mass parameter Mjj (e.g, ωB
j

i =
√

|∂2V/∂j2|
B

i
j
/Mjj ). The method of calculation of the mass

parameters Mηη and Mλλ is presented in chapter 5 [43]. The microscopical values of Mηη and

Mλλ are close to the corresponding hydrodynamical values [84] at the touching configuration of

the nuclei (see chapter 5). In our calculations of the fusion probabilities, the following values

are used h̄ωB
λ
qf ≈ 0.8—1.0 MeV, h̄ωB

η

fus ≈ 1.5—2.0 MeV, h̄ωλ ≈ 1.5—2.0 MeV and h̄ωη ≈ 0.8—1.0

MeV for the reactions considered. The value of h̄ωB
λ
fus at the inner fusion barrier in λ is about

0.5—0.6 MeV and agrees with the one obtained in the calculations of fission [116] at the saddle

point. The friction coefficients ((5.9) and (5.23)) in λ and in η obtained with Γ=2 MeV at

the touching configuration λt have the same order of magnitude as the ones calculated within

the one-body dissipation models [34]. The values obtained for P
λ(η)
fus depend rather weakly on

Γ in (6.9)[34]. The possibility to apply the Kramers expression to relatively small barriers

(Bj
i /T > 0.5) was demonstrated in [117].

6.1 Results and discussion

The time-dependent diabatic potentials for the reactions 110Pd+110Pd and 124Sn+124Sn are

presented in Figs. 6-2a and 6-2b. The time-dependent inner fusion barrier Bλ
fus

in λ appears
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Figure 6-2: a) Time-dependent dynamical potential V (λ, t) as a function of elongation λ for the
system 110Pd +110 Pd. The initial diabatic potential V (λ, t = 0) = Vdiab(λ) and the adiabatic
potential Vadiab(λ) are shown by solid and dotted curves, respectively. The diabatic potential
V (λ, t = t0) at the lifetime t0 of the DNS is presented by a dashed curve. The nuclei are
considered spherical with the neck parameter ε = 0.74. The parameter Γ−1

0
= 0.030MeV −1 is

used in the calculation of the single-particle widths. The fusion Bλ
fus(t = t0) and quasi-fission

Bλ
qf barriers in λ are indicated. These barriers are measured with respect to the minimum of

the potential. b) The same as in a) but for the system 124Sn+124 Sn.
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due to the dependence of the relaxation time of the diabatic potential on the elongation λ as

shown in Fig. 6-3 for the 110Pd+110Pd reaction. The decrease of < Γ > in time causes a slower

transition of the diabatic potential to the adiabatic potential when this potential approaches the

asymptotic adiabatic limit. In the calculations, we use two extreme values of the parameter Γ−1
0

because we consider how fast the transition of the diabatic to the adiabatic potential occurs.

The structures in the vanishing diabatic potential (Fig. 6-2a) are caused by the structures in

< Γ > as a function of λ (Fig.6-3) which disappear in time more rapidly than the structures

of the diabatic potential. Fig. 6-4a shows the dependence of Bλ
fus

on time for the reactions

110Pd+110Pd (η=0) and 56Cr+164Er (η=0.5) which produce the same compound nucleus 220U.

The inner fusion barrier in λ for the asymmetric DNS is pronounced smaller than the one for the

symmetric DNS and decreases slower in time. The smaller values of Bλ
fus

for the asymmetric

DNS can be explained by the initial diabatic hindrance for the motion to smaller values of λ

which is smaller than the hindrance in the symmetric case (Fig. 3-10) [35]. The lifetime t0 of the

DNS formed in both reactions is about 8 · 10−21s and the values of Bλ
fus at this time are larger

than the corresponding fusion barriers Bη
fus in η (see Fig. 6-4b and Table 6-1). So, the fusion

probability Pλ
fus in λ is smaller than P

η
fus in η (Table 6-2). This is also demonstrated in Tables

6-1 and 6-2 for the reactions 123Sn+123Sn, 110Pd+136Xe, 86Kr+160Gd and 76Ge+170Er which

lead to the same compound nucleus 246Fm. The calculated values of P η
fus are in agreement

with fusion probabilities extracted from the experimental data [118]. The fusion barrier along

mass asymmetry does not depend on time because the diabatic potential energy at the touching

configurations with different η is very close to the adiabatic potential energy. From Tables 6-1

and 6-2 one can see that the fusion probability P λ
fus increases with increasing mass asymmetry

in the entrance channel. It follows from our analysis that in the λ-channel as well as in the

η-channel the complete fusion in symmetric reactions yields smaller cross sections in comparison

with asymmetric combinations.
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Table 6-1: Quasi-fission and inner fusion barriers in η and λ calculated within the TCSM

for various symmetric and asymmetric reactions. The inner fusion barriers in λ are given

for the lifetimes t0 of the DNS formed in these reactions. The notations 1) and 2)

mean that the values of Bλ
fus(t0) are calculated with Γ−1

0
= 0.030 MeV −1

and 0.061 MeV
−1, respectively.

Reactions B
λ
qf B

η
fus t0

1)
B

λ
fus(t0)

2)
B

λ
fus(t0)

[MeV ] [MeV ] [10−21s] [MeV ] [MeV ]

90
Zr +90

Zr →
180 Hg 2.9 6 20 10 4

100Mo+100Mo→100 Po 2.2 8 15 12 5

110Pd+110 Pd→220 U 1.3 12 8 36 14

56Cr +164 Er→246 Fm 2.6 2 8 14 4

76Ge +170 Er →246 Fm 0.4 10 5 53 27

86Kr +160 Gd→246 Fm 0.2 12 4 65 39

110Pd+136 Xe→246 Fm 0.1 15 3 91 54

123Sn+123 Sn→246 Fm 0.1 16 3 112 67

136Xe+136 Xe→272 Hs 0 22 2 237 154

Table 6-2: Fusion probabilities P λ,η
fus in the λ− and η − channels calculated

for the reactions presented in the Table 6-1 are compared with known

experimental values P exp

fus [34, 42, 78, 118].

The notations 1) and 2) are the same as in Table 6-1.

Reactions 1)Pλ
fus

2)Pλ
fus P

η
fus P

exp .
fus

90Zr +90 Zr→180 Hg 2·10−4 2·10−2 2·10−1 ∼10−1

100Mo+100Mo→200 Po 9·10−6 3·10−3 2·10−2 5·10−2

110
Pd+110

Pd→
220

U 7·10−15 4·10−7 3·10−4 ∼10−4

56Cr +164 Er→220 U 1·10−6 2·10−3 6·10−1

76Ge +170 Er →246 Fm 9·10−22 3·10−12 6·10−4 8·10−4

86
Kr+160

Gd→
246

Fm 4·10−26 2·10−16 7·10−5 5·10−5
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As shown in Figs. 6-2a and 6-2b, the value of Bλ
fus(t0) for the reaction 124Sn+124Sn is

larger than the value for 110Pd+110Pd. The increasing mass number A of the system generally

causes an increase of the repulsive character of the initial diabatic potential [35] and decreases

the value of the quasifission barrier which mainly determines the DNS lifetime t0. The same

behaviour of the fusion probability Pλ
fus

is obtained for the symmetric reactions 90Zr + 90Zr,

100Mo + 100Mo, 110Pd + 110Pd, 123,124Sn + 123,124Sn and 136Xe + 136Xe as well (Table 6-2).

Despite of the strong decrease of Bλ
fus with the change of the parameter Γ0 from the maximal to

the minimal value, the fusion probabilities obtained in the λ—channel remain to be much smaller

than the fusion probabilities obtained in the η—channel which are similar to the experimental

values [78, 118] (see Table 6-2). In the heavier system the difference between the fusion barriers

and probabilities in both channels is larger and the λ—channel is practically closed. This means

a dominance of the fusion in the mass asymmetry degree of freedom which is the fundamental

assumption in the DNS concept .

The time—dependent transition between diabatic and adiabatic potentials is a slower process

than the quasi-fission one and the system has not enough time for destroying ”memory” on the

diabatic (structural) forbiddenness that is in agreement with conclusions in Ref. [36]. As the

result, a large hindrance for the motion to smaller elongations λ of the DNS is obtained. The

comparison of the calculated energy thresholds for the complete fusion in the λ— and η—channels

shows that the DNS favorably evolves to the compound nucleus in mass asymmetry.
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Figure 6-3: Time-dependent average width < Γ(λ, t) > as a function of elongation λ for the
system 110Pd +110 Pd. The dependences < Γ(λ, t = 0) > and < Γ(λ, t = t0) > are shown by
solid and dashed curves, respectively.
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Figure 6-4: a) Inner fusion barriers Bλ
fus(t) in λ as a function of time for the systems

110Pd + 110Pd (solid curve) and 56Cr +164 Er (dashed curve) which produce the same com-
pound nucleus 220U . The nuclei are considered spherical with ε = 0.74. The parameter
Γ−1
0

= 0.030MeV −1 is used in the calculation of single-particle widths. For times smaller
than 6× 10−21s and 8× 10−21s for η = 0 and 0.5, respectively, the potential V (λ, t) is only re-
pulsive and has no barrier (see Fig. 6-2). b) Calculated adiabatic potential energy of the DNS
in the touching configuration of the nuclei as a function of mass asymmetry η for reactions
leading to the same compound nucleus 220U . The potential is calculated within the adiabatic
TCSM with (solid curve) and without (dashed curve) shell corrections. The fusion barrier Bη

fus

in η for the system 110Pd+110 Pd is shown.
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In the quasi-fission process, the large mass rearrangements between the interacting heavy ions

occur at a short time scale [11, 112]. One of the experimental signatures [113] of this process

is the large width of mass distributions, incompatible with compound nucleus fission. Con-

ceptually, the quasi-fission bridges the gap [106] between the deep-inelastic collisions, where

the reaction partners get into sufficiently close contact to exchange many particles practically

without altering their average mass and charge [33], and the complete fusion process, where

the reaction partners completely lose their identity by transformation into a compound nucleus

[113]. All these types of reaction are organically connected and are derived from the evolu-

tion of a dinuclear system (DNS) [18, 34] which is formed in the entrance channel during the

capture stage of reaction, after the dissipation of the collision kinetic energy. The decay of

the DNS when it evolves in the mass asymmetry coordinate predestines the charge and mass

distributions of the reaction products. The competition between the complete fusion and the

quasi-fission process occurs in reactions with massive nuclei at low bombarding energies (< 15

MeV/u) [34].

In this chapter, the quasi-fission process is described as the evolution of the DNS in the Z

(A) coordinate by nucleons transfer between nuclei taking into account the DNS decay in the

internuclear distance R (or elongation λ). Here, Z (A) denotes the charge (mass) number of the

light fragment of the DNS. For the sake of simplicity, we will use the variables Z(A) instead of the

charge (mass) asymmetry η (ηZ). Since the isotopic composition of the nuclei forming the DNS
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is chosen with the condition of the N/Z-equilibrium in the system, mass and charge evolutions

are described analogously. A diffusion process leads to the exchange of nucleons between the

two touching fragments, thus generating a time-dependent distribution in the Z(A) variables of

the DNS. This process can be described by a master-equation [33, 44, 73, 119] for the probability

PZ(t) of finding the system at the time t in the configuration with the charge number of the

light fragment Z. The asymmetric DNS evolves to a compound nucleus or to a symmetric DNS.

The melting of the DNS nuclei in variable R is strongly hindered [35, 36, 42, 66]. The decay

in R affects the motion of the system in Z. In order to take the effect of the DNS decay into

consideration, we can rewrite the known master-equation for PZ(t) [33, 44, 73, 119] as follows

∂PZ(t)

∂t
= ∆

(−)
(Z+1) P(Z+1)(t) + ∆

(+)
(Z−1) P(Z−1)(t)− (∆

(+)
Z

+∆
(−)
Z

+Λqf

Z
)PZ(t), (7.1)

where the microscopically calculated transport coefficients ∆
(±)
Z

are given by the expression (4.3)

and Λqf

Z
is the rate of decay probability in R. In the right side of Eq. (7.1), only the transitions

Z ⇀↽ Z + 1 and Z ⇀↽ Z − 1 are taken into account in the spirit of the independent-particle

model.

For decay, the DNS should overcome the potential barrier Bqf , which coincides with the

depth of the pocket in the double-folding nucleus-nucleus potential as a function of R. The

bottom of this pocket corresponds to the distance Rm = R1+R2+0.5fm (Ri is the radius of the

nuclei). The values of the quasifission barriers Bqf which depend on Z are mainly responsible

for the lifetime t0 of the DNS. During this time, the DNS evolves in the variables Z. The decay

of the DNS in R is treated using the one-dimensional Kramers rate of probability Λqf

Z (6.9). In

our calculations, the values h̄ωBqf = 1.0 MeV and h̄ω = 2.0 MeV are used for the reactions

considered.

The measurable quasi-fission charge (mass) yield is expressed through the formation prob-

ability PZ(t) of the DNS configuration with charge (mass) asymmetry Z and the decay proba-

bility in R described by the Kramers rate Λqf

Z

YZ(t0) = Λqf

Z

t0∫

0

PZ(t)dt. (7.2)
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The value of t0 is determined in the solution of the Eq. (7.1). The decay of the DNS with

Z > ZBG (ZBG corresponds to the barrier of the DNS potential energy as a function of the

charge asymmetry) mainly contributes to the quasi-fission yield, and the lifetime t0 is calculated

from the condition
∑

Z>ZBG

Λ
qf

Z

t0∫

0

PZ(t)dt ≈ 1. It is assumed that the DNS with Z < ZBG evolves

to a compound nucleus with a great probability. Only for large angular momenta, which are

not considered here, there is a certain decay probability of the DNS with 2 < Z < ZBG [120].

The factors PZ(t) and ΛqfZ are considered separately because the characteristic time for proton

transfer from one nucleus to the other is much shorter than the decay time of the DNS. Since

we consider reactions with heavy nuclei which occur above and near the Coulomb barrier, the

partial waves with angular momentum less than 40h̄ contribute to the quasi-fission, and the

values of Bqf weakly depend on the angular momentum due to the large moment of inertia of

the DNS. The earlier calculations [33, 69, 73] of charge (mass) distributions in deep-inelastic

collisions were performed without taking into account the influence of the decay probability

ΛqfZ in (7.1) and assuming YZ(t0) ≈ PZ(t0).

7.1 Results and discussion

Figs. 7-1 to 7-3 show the quasi-fission charge and mass distributions for the hot fusion reactions

with the projectile 48Ca on the targets 208Pb, 238U and 244Pu, which lead to the synthesis of

the elements 256No, 286112 and 292114, respectively. These reactions were carried out at the

FLNR JINR [11]. The bombarding energy of 48Ca ions was 233 MeV , which corresponds to

an excitation energy of the compound nuclei of E∗
≈ 33 MeV . In these Figures, we show

the part of the quasifission charge (mass) distributions corresponding to the light fragments.

In Figs. 7-1 and 7-2, the distributions reveal large widths and one can observe a notable drift

in mass and in charge away from the initial mass (charge) asymmetry. The masses of the

products are substantially different from the target—projectile masses. One can see that the

symmetric fragments can be formed with quite a large cross section in the quasi-fission process.

The main peak of the charge and mass distributions is around the initial configuration of the

DNS. The form of mass (charge) distribution changes drastically as one goes from the reaction

48Ca+208Pb→256No (Fig. 7-3) to the reactions 48Ca+238U,244Pu→286112,292114 (Figs. 7-1 and
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7-2). In the reactions leading to the nuclei 286112 and 292114, the decay of the more symmetric

DNS configurations becomes more pronounced. The motion of the initial DNS to more asym-

metric configurations (mass asymmetry channel of fusion) in the reaction 48Ca+208Pb is more

favourable than in the reactions 48Ca+238U and 48Ca+244Pu, where the distributions show

similar features for Z < 20 and A < 48. So, the fusion probability in the mass asymmetry

coordinate is significantly larger in the 48Ca+208Pb reaction than in the reactions 48Ca+238U

and 48Ca+244Pu.

The structures in the distribution of quasi-fission products reflect the influence of the shell

effects on the nucleon-exchange process, and the maxima in the charge (mass) distributions are

related to the decay of the DNS consisting of the magic nuclei. In the present microscopical

approach, the shell effects mean the influence of peculiarities of the single particle spectra near

the Fermi surfaces of the DNS nuclei on the nucleon-exchange process. The absence of local

peaks for some magic nuclei is explained by the shell structure of the conjugated nucleus and

the influence of the neutron subsystem.

In the reactions 48Ca+238U and 48Ca+244Pu, the maximum yield of the quasi-fission frag-

ments occurs, for Z > 20 and A > 48, around the nuclei 78Zn and 32Ge, respectively, for the

light fragment with the corresponding heavy fragment 208Pb. The height of this peak is 6 (3)

times larger than the height of the peak in the symmetric mass region in the reaction 48Ca+238U

(48Ca+244Pu). One can see that the results are in good agreement with the available experi-

mental data, which were extracted from Ref.[11]. This experimental mass distribution includes

the quasi-fission events in all angles measured. It should be noted that near the initial DNS

configuration, the quasi-fission events overlapping with the products of other reaction channels

(elastic and quasi-elastic peaks) were not taken into account in the experimental data because

they cannot be clearly distinguish. In our calculations we assume that the DNS is formed in

all reactions considered. In general, the formation of the DNS also depends on the capture

probability, which is determined by the dynamical aspects of the approach stage of the reaction

and by the depth of the pocket in the nucleus-nucleus interaction potential in the entrance

channel [38].

The excitation energy of the initial DNS in all reactions considered is E∗=10 MeV and

the lifetime t0 of the DNS is about (3 − 4)× 10−20s. The initial excitation energy E∗ can be
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Figure 7-1: Charge (upper part) and mass (lower part) distributions of the quasi-fission products
as a function of the charge Z and mass A numbers of the light fragments, respectively, for the
hot fusion reaction 48Ca+238 U →286 112. The charge distribution is calculated for two values
of the excitation energy of the initial DNS: E∗ = 5MeV (dotted line) and E∗ = 15MeV (solid
line). The mass distribution is compared with the experimental data [11] (open points) for
E
∗ = 10MeV .
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Figure 7-2: The same as in Fig. 7-1 for the hot fusion reaction 48
Ca +244

Pu →
292 114. The

experimental mass distribution (open points) is taken from the Ref. [11]. The excitation energy
of the initial DNS is E∗ = 10 MeV (upper and lower parts).
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estimated from the difference between the bombarding energy Ec.m. in the system of the center

of mass and the value of the nucleus-nucleus potential for R corresponding to the bottom of the

pocket for the initial configuration of the DNS. The charge (mass) quasi-fission distributions

depend slightly on the excitation energy E∗ of the initial DNS (Fig. 7-1). This is due to the

weak dependence of the transport coefficients ∆
(±)
Z

on the temperature [33]. With an increasing

temperature of the system, the influence of the shell effects on the process of nucleon transfer

decreases more slowly than the exponential decrease of the shell correction in the potential

energy [33]. It was experimentally found [113] in the quasifission reactions 238U+16O, 26Mg,

27Al, 32S, 35Cl, 40,48Ca and natZn at several bombarding energies, that the mass asymmetry

motion is dominated by the one-body dissipation which is independent of temperature. The

observed relaxation times for the mass asymmetry mode of all the systems considered were in

agreement with the wall dissipation picture [113].

Fig. 7-3 shows the quasi-fission charge and mass distributions for the cold fusion reactions

with the projectiles 50Ti, 64Ni and 76Ge on the target 208Pb, which lead to the synthesis of the

elements 258104, 272110 and 284114, respectively, with an excitation energy about 11-16 MeV [7,

8]. The ratio between the drifts of mass and charge toward symmetric configurations of the DNS

and toward more asymmetric ones becomes considerably larger with the increase of the charge

number of the superheavy element. Due to this fact, the complete fusion probability in the mass

asymmetry degree of freedom decreases from the nucleus 258104 to 272110. For the reaction

76Ge+208Pb→284114, we found that the quasi-fission products are practically associated with

fragmentations near the initial DNS due to small values of quasi-fission barriers Bqf . Comparing

Fig. 7-3 with Fig.7-2, we see that the mass and charge yields of the quasi-fission products for

nearly symmetric configurations of the DNS are larger for the hot fusion reaction 48Ca+244Pu

than for the cold fusion reaction 76Ge+208Pb. The quasi-fission barrier Bqf of the initial DNS

becomes larger with decreasing Z, and the nucleon transfer plays a larger role in the evolution

of this DNS than the decay process. This is consistent with the conclusion that the hot fusion

reaction 48Ca+244Pu→292114 is preferable for the synthesis of the element 114, although the

survival probability of the compound nucleus decreases with increasing excitation energy [20,

22]. In the cold fusion reactions, the quasi-fission is an important factor decreasing the complete

fusion cross sections with increasing atomic number of the superheavy element. Producing the
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Figure 7-3: The same as in Fig. 7-2 for the fusion reaction 48
Ca +208

Pb→
256 102 (solid line)

and for the cold fusion reactions 50Ti +208 Pb →258 104 (dashed line), 64Ni +208 Pb →272 110
(dotted line) and 76

Ge+208
Pb→

284 114 (dashed-dotted line).
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elements from Z=104 to Z=112 in the cold fusion reactions, the experimentalists observed a

rapid fall-off of the evaporation residue cross sections (about four orders of magnitude) with

increasing charge number of the compound nucleus [7, 8]. In the model of fusion based on the

DNS-concept, the fusion cross sections and excitation functions for the cold fusion reactions

leading to the formation of superheavy elements are obtained in good agreement with the

experimental data [20].

The structure of the mass (charge) distribution of the quasi-fission products well corresponds

to the peculiarities of the driving potential (the DNS potential energy as a function of mass

(charge) asymmetry) shown in chapter 4. In order to illustrate the connection between the

quasi-fission product yield and the driving potential, Fig. 7-4 shows the quasi-fission charge dis-

tribution for the reactions 110Pd+136Xe (η=0.1),86Kr+160Gd (η=0.3) and 76Ge+170Er (η=0.4),

which lead to the formation of the same compound nucleus 246Fm. The distributions reveal

large widths and one can observe a notable drift in charge (mass) away from the initial charge

(mass) asymmetry of the interacting nuclei. The product masses are substantially different

from the target—projectile masses. It is seen that the symmetric fragments can be formed

in the quasi-fission process if the entrance DNS is an asymmetric one. We can observe that

the main peak of the distributions is around the initial configuration of the DNS. Compar-

ing Fig. 7-4 with Fig. 4-7a), we observe that there is a correlation between the peaks of the

quasi-fission distribution and the minima of the driving potential. The inner fusion barrier Bη

increases with decreasing mass asymmetry η (Figs. 4-1 to 4-7b)), while the quasi-fission bar-

rier Bqf becomes smaller because the Coulomb repulsion increases with decreasing η and leads

to very shallow pockets in the nucleus-nucleus potential for nearly symmetric configurations.

Therefore, the decay of the initial DNS dominates in symmetric or nearly symmetric collisions.

The experimental fusion probability becomes larger with the increase of the mass asymmetry

η in the entrance channel [118]. This experimental evidence for a hindrance of fusion has been

mainly concluded from the impossibility to produce fermium evaporation residues with nearly

symmetric projectile-target combinations [118].

The main conclusions are: 1) The quasi-fission products of fusion reactions are correctly

described within the DNS model: diffusion in charge (mass) asymmetry and in relative distance

(the DNS decay) coordinates contributes to the yield of quasi-fission products. 2) The quasi-

102



0 10 20 30 40 50
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

 110Pd + 136Xe

 86Kr + 160Gd

 76Ge + 170Er

Y
Z

Z

Figure 7-4: Charge distributions of the quasi-fission products for the reactions 110Pd+136 Xe

(η = 0.1, solid line), 86Kr +160 Gd (η = 0.3, dashed line) and 76Ge +170 Er (η = 0.4, dotted
line) which lead to the same compound nucleus 246Fm. The arrows denote the initial DNS.
The excitation energy of the initial DNS formed in these reactions is E∗ = 20 MeV.
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fission process is an important factor which reduces the probability of complete fusion of heavy

nuclei. Since the quasi-fission dominates in the cold and hot fusion reactions, the comparison

of the theoretical and experimental data is a critical test for the existing fusion models.
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Chapter 8
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8.1 Summary

Depending on the main degree of freedom used for the description of fusion, two different types

of models for fusion can be distinguished. The first type of models assumes a melting of nuclei

along the internuclear distance (or elongation λ) [15, 16]. The second type is the dinuclear

system model [17, 34]. Models describing the fusion process as an internuclear melting of nu-

clei often use adiabatic potential energy surfaces. These potentials are calculated with the

macroscopic-microscopic method of the Strutinsky formalism. Without regarding the competi-

tion between complete fusion and quasi-fission, the first type of models overestimates the fusion

cross section of heavy nuclei [18]. However, the dinuclear system model describes the experi-

mental fusion data quite well. In this model, the fusion process is considered as the evolution of

a dinuclear system caused by the transfer of nucleons from the light nucleus to the heavy one.

The dinuclear system consists of two touching nuclei, which conserve their individuality, and

evolves in the mass asymmetry η to a compound nucleus or decays in the elongation λ. The

model assumes that the motion of the dinuclear system to smaller elongations λ is strongly hin-

dered. This is phenomenologically described with a double folding potential in frozen density

approximation which shows a minimum near the touching configuration of the nuclei.

We have investigated the fusion and quasi-fission process of heavy nuclei using the two-center

shell model (TCSM). The diabatic potential energy surfaces as a function of the elongation λ,
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the neck coordinate ε and of the mass asymmetry η were calculated for the entrance phase of

collisions between spherical heavy nuclei. The effect of the deformation of the nuclei and of the

temperature on the diabatic potential energy as a function of the elongation λ was analysed.

In a diabatic description the nucleons do not occupy the lowest free single-particle levels as

in the adiabatic case, but remain in the diabatic levels during the collective motion of the

nuclear system. As a result, the diabatic potential energy surface is raised with respect to

the adiabatic potential energy surface and new potential barriers for collective variables may

appear. From the study of the diabatic single-particle spectrum, we obtained that the diabatic

effects for the motion of the system in λ and in ε are already important for relatively small

excitation energies of 6—14 MeV. Diabatic TCSM levels do not show avoided level crossings.

Avoided level crossings can be removed from the adiabatic TCSM by eliminating the symmetry-

violating parts from the adiabatic Hamiltonian of the TCSM. Since the diabatic effects are

small near the touching of the nuclei, they are not important for the potential of the dinuclear

system as a function of the mass asymmetry η at the touching configuration of the nuclei.

The isotopic dependence of the potential as a function of the mass asymmetry coordinate η

at the touching configuration of the nuclei calculated within the adiabatic TCSM using the

Strutinsky method was studied for various heavy dinuclear systems. Moreover, this potential

was compared with the potentials calculated with a phenomenological method and with another

alternative microscopical method. The phenomenological method uses the binding energy of

the nuclei and the nucleus-nucleus potential which includes the Coulomb and nuclear terms.

The nuclear part of the nucleus-nucleus potential is calculated using a double-folding procedure.

With the alternative microscopical method, the potential energy is calculated using the rate of

probability of nucleon transfer between the nuclei of the dinuclear system.

Mass parameters as a function of the elongation λ, the neck coordinate ε, the mass asym-

metry η and of the deformation βi for heavy dinuclear systems were evaluated in the TCSM.

Formulas for the masses are derived within the linear response theory by taking into account the

fluctuation-dissipation theorem and the width of single particle states, and by other methods

as Fermi’s golden rule and a spectral smoothing in the mean—field cranking formula.

In order to study whether the fusion is possible in the elongation coordinate λ, we considered

the transition from the diabatic potential to the adiabatic one in the motion of the system in
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λ during the lifetime t0 of the dinuclear system. The competition between two possible fusion

channels was studied. The λ—channel describes the transition of two nuclei into the compound

nucleus with the elongation coordinate λ for a fixed mass asymmetry η during the fusion.

The second channel, named η—channel, describes the evolution of the dinuclear system to the

compound nucleus as a change of the mass asymmetry η by nucleon transfer from the light

nucleus to the heavy one.

The quasi-fission process of the dinuclear system was studied solving a transport master-

equation for the exchange of nucleons between the parts of the dinuclear system, which also

takes the decay of the dinuclear system in the elongation λ into account.

In this work, we have obtained the following results:

• The diabatic effects in the entrance phase of the reaction give rise to hindrances for the

growth of the neck and for the motion to smaller relative distances.

• The diabatic potentials as a function of the elongation λ are similar to the phenomeno-

logical double folding potentials used in the dinuclear system model of fusion.

• For the asymmetric dinuclear system, the diabatic hindrance for the motion to smaller

elongations λ is smaller than for the symmetric dinuclear system. Therefore, its evolution to

the compound nucleus in λ is more favored.

• The potentials as a function of the mass asymmetry η at the touching configuration of

the nuclei calculated within the TCSM are similar to the ones calculated using other methods.

• The isotopic dependence of the fusion barrier in η, calculated within the TCSM, agrees

with the isotopic behaviour of the experimental surplus of energy ∆Bexp = Bexp
−BBass above

the Bass barrier BBass.The value of Bexp is defined as the value of the bombarding energy for

a fusion probability 0.5.

• The adiabatic and diabatic microscopical mass parameters for the neck degree of freedom

ε are much larger than the one obtained in the hydrodynamical model with the Werner-Wheeler

approximation. By applying the microscopical mass parameters, we find a relatively stable neck

during the time of reaction.

• The dinuclear system is stable against a melting in λ and ε. The diabatic effects and the

microscopic mass parameters give a justification for the use of the dinuclear system in heavy

ion collisions at low energies.
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• The time-dependent transition between the diabatic and adiabatic potentials is a slower

process than the quasi-fission process and the system has no time for destroying the ”nuclear

memory” about the diabatic (structural) forbiddeness for the motion to smaller elongations λ.

• The fusion probabilities obtained in the λ-channel are much smaller than the probabilities

obtained in the η-channel of fusion, which are similar to the experimental values. The heavier

the system, the greater is the difference between the fusion barriers and probabilities in both

channels of fusion. The λ-channel is practically closed.

• The fusion in the mass asymmetry degree of freedom considered in the dinuclear system

concept dominates the complete fusion process for heavy systems.

• Using a transport master-equation to describe the nucleon transfer between the nuclei

forming a dinuclear system, which takes the decay of the dinuclear system in the elongation λ

into account, the quasi-fission products of fusion reactions are correctly described and are in

agreement with the experimental data.

• The quasi-fission process is an important factor which reduces the probability of complete

fusion of heavy nuclei.

8.2 Outlook

The search of the fission path in the multi-dimensional space of collective variables is still an

open problem. The fission process is usually considered as an adiabatic process where the

relevant collective variables are the elongation, the mass asymmetry, the neck coordinate and

the deformation of the fragments [94]. In addition to the potential energy, the friction and

the mass tensor play an important role in the dynamics of the fissioning system. There is not

yet a fission model in which it is possible to explain all experimental observables of the fission

process, e.g., mass and charge distributions, total kinetic energy distribution, two-dimensional

mass-total kinetic energy distribution, angular distribution of the fragments, etc. The most

promising model is the Brosa model of the multi-modal fission ([121], [122]).

It will be interesting to study as a possible fission path the inverse path used by the dinuclear

system model of fusion. The fission phenomenon could be treated as a two-step process: a

light nucleus (α-particle) is created within the diffuse edge of the fissioning nucleus; then this
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nucleus grows, gaining nucleons from its partner nucleus till the dinuclear system dissociates.

Preliminary estimations show that the heights of the barriers for the asymmetric and symmetric

fissions as well as the competition between asymmetric and symmetric fission channels and the

properties of charge, mass, energetic distributions of the fission products are reproduced in this

approach. The spontaneous fission process could be considered as a tunneling process in the

mass asymmetry degree of freedom η. The role of diffusion and friction in the tunneling in η

for the dinuclear system could be considered using the Lindblad axiomatic approach for open

quantum systems [123, 124]. Changes in the deformation of the nuclei during the tunneling

process could also be taken into account. The nuclei Fm and Cf are especially attractive for

this study.

Using the structural forbiddenness concept [63], we could study the hindrances for the

fragmentation process in λ and η degrees of freedom. The comparison of the calculated energy

thresholds (fission barriers) for the fission in λ and η variables could provide the answer about

the favorable fission path.
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For describing nucleus-nucleus collisions, we use the TCSM [40] as a single-particle model. The

Hamiltonian of the model is

H = −
h̄2∇2

2m0

+ V (ρ, z) + VLS(r,p, s) + VL2(r, l), (A.1)

in cylinder coordinates z, ρ and ϕ. The momentum-independent part of the potential may be

expressed as

V (ρ, z) =
f0

2
m0ω

2z′2(1 + cz′ + dz′2) +
1

2
m0α

2(1 + gz′2)ρ2. (A.2)

The momentum-dependent parts are

VLS = −

{
h̄κ

m0ω0
, (∇V × p) · s

}
, (A.3)

VL2 = −
1

2

{
h̄κµ

m0ω
3

0

, l

}
+ h̄κµω0

N(N + 3)

2
δif , (A.4)

with the abbreviation z
′ = z − zi . The positions of the centers are denoted by z1 and z2,

z1 ≤ 0 ≤ z2. The behaviour of V (ρ, z) along the z-axis can be seen from Fig. A-1, where the

potential is plotted below the associated nuclear surface. To the left of z1 and to the right of

z2 the potential (A.2) is simply that of a deformed oscillator. Between the centers, however,

there are considerable deviations caused by a variable barrier and by the need of joining the
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fragments continuously.

Figure A-1: The potential along the z-axis and the associated nuclear shape. The designations
of the geometrical quantities have been indicated and the quantities for the definition of the
parameter ε = E0/E

′ are shown.

The constants are listed in Table A and l = (∇V × p)/m0ω
2

0
. In these formulas, {A,B} =

AB + BA denotes the anticommutator of A and B and δif is the Kronecker symbol. The

quantity N should be chosen such that it approaches the usual principal quantum number of

the spherical oscillator in the limiting cases of a single sphere and that of two separate fragments

with a large separation.

The coefficients g, c and d are determined by requiring that the potential and its derivative

with respect to z is continuous at z = 0.

The oscillator frequencies, ω and α, must be determined numerically from the assumption

of volume-conservation inside the equipotential surface V (ρ, z) = V0 with
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V0 =
1

2
m0N

2R2

0
. (A.5)

The volume is

W0 =
4π

3
R2

0
, (A.6)

where

R0 = 1.2249fm ·A1/3

h̄N = 41MeV ·A−1/3

The coordinates of the centers, z1 and z2, are calculated with the condition that the barrier

must have the same position on the z-axis as in the two-center oscillator [125]

E
′ =

1

2
m0ω

2
z
2

0
=

1

2
m0ω

2

z1z
2

1
=

1

2
m0ω

2

z2z
2

2
. (A.7)

The constants g, c, d, ω, α, z1 and z2 depend on the nuclear shapes, which are defined by

the collective coordinates: elongation λ, mass asymmetry η, neck parameter ε and deformations

βi of the axial symmetric fragments.

The parameters κ, µ and ω0 are determined by a convenient interpolation method regarding

these parameters as functions of extrapolated masses of the fragments in order to achieve the

correct transition from the system of two separate nuclei to the compound-system configura-

tion. The additional undefined quantity f0 has little influence on the total energy for a wider

range of values, and from liquid drop model calculations it was found that f0 = 4ε is a good

approximation to the value giving minimal energy.
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Table A

Symbol z < z1 z1 < z < 0 0 < z < z2 z2 < z

ω ωz1 ωz1 ωz2 ωz2

α ωρ1 ωρ1 ωρ2 ωρ2

c 0 c1 c2 0

d 0 d1 d2 0

g 0 g1 g2 0

z′ z − z1 z − z1 z − z2 z − z2

κ κ1 κ1 κ2 κ2

µ µ1 µ1 µ2 µ2

ω0 ω01 ω01 ω02 ω02

l l1 l1 l2 l2

f0 1 f0 f0 1

The single-particle-energies are obtained through a diagonalization of the Hamiltonian (A.1)

in the basic functions < ρϕz | nznρlz > given by Holzer et al. [125] for the symmetric two-center

oscillator, multiplied by spin wave functions | sz >. The wave functions < ρϕz | nznρlz > can

be written as

< ρϕz | nznρlz >= ϕnz
(z) · χ

|lz |
nρ

(ρ) · νlz
(ϕ), (A.8)

where

νlz
(ϕ) =

1√
2π

exp(ilzϕ), (A.9)

for arbitrary integers lz .

χ|lz |
nρ

(ρ) = C−1
k

|lz |+1
2

ρ exp(−
1

2
kρρ

2) · ρ|lz |
· L

|lz |
nρ

(kρρ
2), (A.10)

with a normalization constant C and kρ = m0ωρ

h̄
. nρ is a non-negative integer, and Lαn(x) is a

Laguerre polynomial.
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ϕnz(z) =



C
−1

z1
U(−nz1 −

1

2
,−
√
2kz1(z − z1)) if z < 0

C−1
z2
U(−nz2

−

1

2
,
√
2kz2(z − z2)) if z > 0



, (A.11)

with normalization factors Cz1
and Cz2

. The quantum number nz assumes different values on

both sides of the origin, too. As the energy

E = h̄ω(nz +
1

2
) + h̄ωρ(2nρ+ | lz | +1) (A.12)

should not depend on z, the values nz1 and nz2 are related by

ωz1
(nz1 +

1

2
) = ωz2

(nz2
+

1

2
). (A.13)

U(a, x) denotes a parabolic cylinder function [40]. The values of nz must be determined

numerically from assuring the continuity of the logarithmic derivative of (A.11) in z = 0.

The Hamiltonian (A.1) can be split into several parts which are treated separately

H = H0 +H1 + VLS + VL2 . (A.14)

H0 is the Hamiltonian of a two-center oscillator

H0 = −
h̄
2
∇

2

2m0

+
1

2
m0ω

2
z

′2
+

1

2
m0ω

2

ρ
ρ2, (A.15)

and H1 is given by

H1 =
f0

2
m0ω

2z′2(cz′ + dz′2) +
(f0 − 1)

2
m0ω

2
z

′2 +
1

2
m0

[
α
2(1 + gz

′2)− ω
2

ρ

]
ρ
2
, (A.16)

where ωρ is an optimal value between ωρ = min(ωρ1 ,
ωρ2

) and ωρ =
1

2
(ωρ1

+ ωρ2
).

During the calculation of matrix elements it turns out to be advantageous to introduce

another quantum number

Nρ = 2nρ+ | lz | (A.17)
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instead of nρ, and to multiply the basic functions with a phase factor . So the functions actually

used are

| nzNρlzsz >= (−1)
1

2
(lz+|lz |) | nz ,

Nρ− | lz |

2
, lz > · | sz > . (A.18)

The matrix elements are presented in [40].
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Appendix B


�� � ����� ��$� � ��� � ��� �
 �� ����

The collective response function [86] can be derived by introducing a (hypothetical) external

force F̂ ˜fext(t) and by evaluating how the deviation of < F̂ >ω from some properly chosen

static value reacts to this external field in linear order

δ < F̂ >ω= − χcoll(ω) · fext(ω). (B.1)

The collective response function can be brought to the form [86]

χcoll(ω) =
χ(ω)

1 + kχ(ω)
. (B.2)

Here, χ(ω) is the Fourier transform of the response function for intrinsic motion. Its time-

dependent version reads

˜

χ (t− s) = ϑ(t− s)
i

h̄
tr
{
ρ̂qs(Q0, T0)

[
F̂ (t), F̂(s)

]}
, (B.3)

where ϑ(x) is the Heavyside’s function. In the expression (B.3) the time development of the

field operators is defined by the same Hamiltonian Ĥ(xi, pi, Q) which appears in the density

ρ̂qs.

The coupling constant k is written in the form

−k
−1 =<

∂2Ĥ(xi, pi,Q)

∂Q2
>Q0 ,T0=

∂2E(Q, S0)

∂Q2
|Q0

+ χ(ω = 0) = C(0) + χ(0) (B.4)
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with χ(0) and C(0) being the static intrinsic response and stiffness, respectively. Since the

constant k is entirely determined by quasi-static properties, it is no surprise thatE is the internal

energy at a given entropy S0 or the free energy at a given temperature T0. The structure of

Eq.(B.2) reflects self—consistency between the treatment of collective and microscopic dynamics.

It expresses the response of the system of interacting nucleons in terms of the response of the

individual nucleons.

In the local harmonic approximation [86], the inverse of the collective response function

χ−1
coll

(ω) is considered as the inverse of the damped oscillator response function χ−1
osc

(ω) which

is expressed as

χ−1
osc

(ω) = CF
− iγFω −MFω2, (B.5)

where CF , γF and MF are related to the derivative of the effective collective potential, calcu-

lated in linearized form, to a friction force and to an inertial one, respectively. The associated

”transport coefficients” have been marked by a superscript F to indicate that they are asso-

ciated with the quantity δ < F̂ >. The transport coefficients Ţ= M,γ,C of the Q-mode are

related to the transport coefficients ŢF = MF , γF , CF of the δ < F̂ >-mode by the relation

ŢF = k2Ţ [86]. An expression like (B.5) may be obtained by expanding χ−1
coll

(ω) (B.2) to second

order in ω. In this way one gets

C ≈
1

k2χcoll(ω)
|ω=0,

γ ≈
1

k2
∂χ−1

coll
(ω)

∂ω
|ω=0, (B.6)

M ≈
1

2k2
∂2χ−1

coll
(ω)

∂ω2
|ω=0 .
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