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The goal of the investigation was to broaden our knowledge about the pattern of protein 

synthesis during the induction phase of somatic embryogenesis in Daucus cultures using 

petioles as the source material implementing histological, biochemical, molecular and bio-

informatics methods to achieve this aim for a better understanding of the somatic embryo-

genesis in the model system carrot.  

During the induction phase, histological examination of cross sections of petiole explants of 

Daucus carota in Gamborg medium with a concentration of 0.5 ppm 2,4-D liquid media 

shows three different zones, namely, a rhizogenic area with the appearance of cytoplasm 

1
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rich cells and first cell division located around the vascular bundles 2 days after culture 

initiation in an auxin containing medium (Schäfer et al., 1988). Root primordia appear 5 days 

after culture, and at 7 days of the culture adventitious roots appear. Second, a caulogenic 

area which arises from the parenchyma, with first cell divisions 5 days after culture in an 

auxin containing medium. Shoot primordia appear 12 days after culture, and finally embryo-

genic areas appear which are characterized by cytoplasm rich cells and first cell divisions in 

subepidermal regions 12 days after culture in auxin containing media. These cytoplasm rich 

embryogenic cells, when transferred to an auxin free medium, divide and give rise to  

globular structures which proceed to torpedo and finally mature embryo forms. This trend 

can be seen through staining the petiole transection with hematoxylin.  

 

To study the pattern of the protein synthesis, the cultured petiole explants were labelled with 
14C-Leucine. Comparison of the historadiogram of t0 (t5h), t7 and t14 section indicates a 

preferential accumulation of 14C-Leucine in the active morphogenic areas at different stages 

of culture.  

 

Coomasse brilliant blue R-250 stained and 14C-Leucine labelled 2-DE of protein spots in a 5 

hours, 7 days and 14 days old carrot petiole culture showed 91, 250 and 256 spots respec-

tivly (Grieb et al., 1977). 71 spots appeared at all periods, however, each period had its own 

specific proteins. Some spots were merely stained, some merely labelled, and some stained 

and labelled. 

Global protein analysis is a procedure to identify proteins and their functional analysis using an 

identification data base, in this case Swiss Prot, through subtractive analysis and comparison on 

the basis of protein spots variation, additional spots, missing spots, using MW and pI of the 

protein spots for identification. 

To examine the role of nitrogen, particularly during the realization phase of somatic embryo-

genesis in carrot petiole and suspension cultures and the role of pH, inorganic reduced and 

oxidized forms such as (NH4)2 SO4 and KNO3  and an organic form of nitrogen in form of 



 xiv

casein hydrolysate were used. According to the results obtained, ammonium sulfate as the 

reduced form of nitrogen in higher concentrations reduces pH of the liquid medium to a range 

of 4.00 on the pH scale, which leads to the arrest of embryo development. By using potassium 

nitrate, globular structures developed into heart, torpedo, mature embryos, and finally plantlets 

were formed. Potassium nitrate increased the pH of the liquid medium to 7.2. Using casein 

hydrolysate at the same nitrogen concentration as the inorganic nitrogen source, embryo 

development was arrested at the late torpedo stage. This form of nitrogen, having a close 

relationship between its pH and pK, acts as a buffer, therefore, pH of the liquid solution 

medium was not strongly subjected to variation.  

 

 A very important character of the selected nitrogen form used is their effect on the pH 

of the culture medium. A mixture of three different nitrogen forms in the solution had a pH 

capacity between the organic and inorganic nitrogen containing solution. So the solution 

makes use of different characteristics of each nitrogen form. Diammonium sulfate reduces pH 

of the solution, potassium nitrate exerts an opposite effect by increasing pH, and finally casein 

hydrolysate acts as buffer to stabilize the pH of the system.
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2 LITERATURE REVIEW 

 

 

The science of plant cell culture, linking developmental, cellular, and molecular genetics 

with conventional plant breeding, enjoys a pivotal position in the general area of 

agricultural biotechnology, as seen in the commitments being made by major academic 

institutions, research foundations, and institutional corporations. Agricultural planners are 

depending on plant cell culture and molecular genetics to accelerate the pace of plant 

breeding and allow food production to meet the needs of a world population that will 

potentially increase, from 6 to 10 billion, in the next 20 years. Moreover, this new 

technology fits within the 5 to 7 year corporate research time-frame of industry, by 

allowing the production of value-added consumer and industrial products with an 

agricultural base. 

 

 

 

2.1 Carrot 
 

 

 Carrot [Daucus carota L. subsp. sativus (Hoffm)] is a temperate climate plant grown 

for its edible storage taproots throughout much of the world. Carrot grows optimally at 

15-20° C and is cultivated in the spring, summer, and autumn in temperate climates and in 

the winter in subtropical climates. For a good many years, it was a minor crop, the taproots 

serving primarily as an ingredient in soups and sauces. In recent times, its popularity as a 

vegetable in itself has increased markedly. 

Carrot is a member of the Apiaceae, the parsley family, which includes such vegetables and 

spices as parsley (Petroselinum sativum L.), celery [Apium graveolens L. var. Dulce (Mill.) Pers.], 

celeriac [A. graveolens L. var. Rapaceum (Mill.) Gared. Beaup.], parsnip (Pastinaca sativa L.), 

caraway (Carum carvi L.), coriander (Coriandrum sativum L.), anise (Pimpinella anisum L.), 

fennel (Foeniculum vulgare Mill.), cumin (Cumin cyminum L.), and dill (Anethum graveolens L.). A 

number of wild species are extremely poisonous, including the poison hemlock (Conium 
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maculatum L.). The family is large and taxonomically complex. All cultivated carrots are 

forms of the wild carrot (Daucus carota L. subsp. carota). 

Almost 80 species have been described for the genus Daucus, half of which are subspecies 

or forms of the species D. carota. Chromosoms numbers of around 25 Daucus species are 

known (Bell and Constance, 1960; Moore, 1971); the basic number ranges from n = 7 to n 

= 11. The species, D. carota L., to which all cultivated and wild carrots belong, is diploid, 

with nine pairs of chromosomes (n = 9, 2n = 2X  = 18). The only other species with n = 9 

are D. capillifolius gilli and D. sytricus Murb. from North Africa. Two polyploid species have 

been reported: D. glochidiatus Labill. (2n = 4x = 44) and D. montanus Humb. et Bonpl. (2n = 

6x = 66). Polyploidy and structural changes in the chromosomes apparently have not 

played a major role in the differentiation of the species (Whitaker, 1949). 

The domestic carrot is typically biennial, although annual forms are known. It produces a 

rosette of leaves and the fleshy taproot during the first growing season, and the flower 

stalk and seed in the second. The taproots need a cold period, or vernalization, in order to 

sprout and flower in the second season. The inflorescence is a terminal compound umbel: 

a primary umbel with a system of second-, third-, and fourth-order umbels, defined by the 

sequence in which they form on the main stem. The primary umbel is the largest, and each 

order is progressively smaller in size. The flowers are small, and bear white petals. There 

are five petals, five stamens, and a single, inferior ovary, bearing two locules, each 

containing a single ovule. The seed is a “mericarp”, one-half of a dry, indehiscent fruit. 

Carrots are natural outbreeders, showing severe inbreeding depression. 

 

 

 

2.2 Callus Initiation 

 

 

 The first cultures of nontumorous plant cells were from carrot roots (Gautheret, 

1939; Nobecourt, 1939. In the same year, White (1939a,b) reported the growth of genetic 

tumors from the interspecific hybrid Nicotiana glauca x N. langsdorffii. The cultures were 

initiated and maintained on a medium composed of a Knoop solution supplemented with 

Berthelot's mixture of accessory salts, glucose, gelatin, thiamin, cysteine hydrochloride, and 
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indoleacetic acid. On such a medium, carrot callus tissue could be maintained for many 

years without apparent diminution of growth rate and with the only sign of differentiation 

being occasional lignified cells. 

The responsiveness of carrot tissue to growth induction has made it a model system for 

studies of factors promoting cell division (Steward, Mapes, and Ammirato, 1969). The 

facility with which the carrot cells can be grown in liquid media in suspension cultures has 

made it useful for studies of cell growth, including scale-up using bioreactors, secondary 

product synthesis and mutant selection. 

 

 

 

2.3 Morphogenesis in Carrot Cultures 

 

 

 Nobecourt (1939), studying the growth of carrot taproot tissue, reported the 

appearance of roots from the callus mass. Callus tissue could be removed from stationary 

cultures and grown in a liquid medium as suspension. Roots were frequently seen in carrot 

tissue cultures; shoots also developed, but less frequently (Levine, 1947). Within a short 

period, both Steward (Steward et al., 1958), working with suspension cultures, and Reinert 

(1959), working with callus cultures on semisolid medium, described the development of 

somatic embryos and ultimately plants from carrot tissue. In Steward's work, suspensions 

were grown in a culture medium with 10 % CW in which multicellular masses arose. If the 

masses remained in the liquid medium, root meristems formed and roots emerged. If, 

before root growth occurred, the multicellular aggregates were transferred to medium 

solidified with agar, “meristematic nodules” very closely resembling developing carrot 

embryos arose and buds and leaves emerged. Reinert (1959) grew carrot callus on medium 

containing 7% CW and IAA (57 µM) and observed root formation if tissue was transferred 

to auxin-free medium or allowed to grow on the same medium for a long period. 

However, callus maintained for several months on a complex medium (Reinert and White, 

1956) underwent a change in texture and morphology; the outer surface became covered 

with “horny nodules” that upon close examination appeared similar to “normal bipolar 

carrot embryos”. 
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2.4 Embryogenesis  
 
 
 One understands somatic embryognesis as a developmental process of somatic 

cells, which resembles morphologically zygotic embryogenesis (Neumann, 1995). 

This process can be initiated using cells from different plant organs, for example, carrot 

explants of roots, leaf petiole, hypocotyle, leaf lamina and other plant parts. Even if 

somatic and zygotic embryogenesis morphologically resembles one another, some 

morphological and anatomical deviations exist. By using a suspension culture through 

application of a bioreactor, the whole process for industrial means can be automatised, 

which has economical advantages over meristem culture and adventive organogenesis. The 

other aspect of somatic embryogenesis is the greater cytogenetic stability of the plants in 

comparison to adventive organogenesis, although the number of plants produced through 

somatic embryogenesis could be less than using adventive organogenesis. The plant species 

plays a role too. In some plants, this process cannot produce embryos. These are called 

recalcitrant plants, the number of which is large. 

 

 The process of somatic embryogenesis is not only important for the production of 

plants and secondary products, but also for the transgenic plants and fussed cells. One of 

the most important uses of somatic embryogenesis is in studying biochemical processes in 

the cell. The aim is to establish a system applicable for nearly all plant species. The system 

needs differentiation of the totipotent cells, and it occurs on a medium supplemented with 

the plant hormone Auxin. Different researchers use different auxins to achieve this. The 

most common is the synthetic auxin 2,4-D, which originally is a herbicide. This auxin is 

very persistent and photo-non-sensitive, some others use the auxin IAA, which is 

photosensitive and degrades within 4-6 days (Neumann, 1995). There is an advantage to 

using IAA, because the cells can be kept in the same culture vessel and there is no need for 

subculturing the cells in a fresh hormone free vessel, through which the chance of 

contamination is reduced and it is industrially more favored. After removing the 

differentiated cells or plant material, the cells undergo subsequent embryonal stages, 

namely PEMS, globular, heart and torpedo stage and ultimately small plantlets with two 

cotyledonary leaves and roots will be visible. 
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2.4.1 Some Fundamental Aspects of Embryogenesis 

 

 

 Apart from the zygotic embryogenesis, some plants develop asexual embryos, 

which is called apomixis. In case of adventive embryo formation or also called nucellar 

embryo formation, the generation change and formation of the embryo sack does not 

occur, so that the diploid embryo (somatic) arises directly from the diploid cells, present in 

embryo, nucellus or the integuments. The sporophytic form of apomixis often leads to 

polyembryony, for example, as in case of citrus (Maheswari, 1979). By contrast, in 

gametophytic apomixis a generation change and the formation of embryo sack occure. The 

diploid embryo sacks as formed in the case of Apospory, which is also called somatic 

apospory, is formed from the vegetative cells of the nucellus, and distinguished from 

diplospory, which is also called vegetative apospory from the embryo sack mother cell as a 

consequence of an uncompleted meiosis. In both cases, the embryo contains 2n, which is 

parthenogenetic either from the egg cell or from the synergides or antipodes (diploid 

apogamy). Haploid parthenogenesis or haploid apogamy are the processes of the so called 

“non recurrent” apomixis (Maheswari, 1979). So it seems not only the embryo sack mother 

cells, but also some cells of embryo have some kind of embryogenic competence 

(Neumann, 1995). Finally, there is the possibility of embryo development from micro- and 

macrospores (androgenesis, gynogenesis). 

 

 Induction of embryonal development in these cells needs stimulus. This stimulus, 

in the case of zygotic embryogenesis, is pollination. In apomictic embryogenesis, this 

process can come into action through pollination or through other factors like temperature 

shock or changes in the photoperiod (Nogler, 1984). The chemical nature of such a 

stimulus is not yet known. The prerequisites for embryo development are the embryonic 

competence of the cells, a stimulatory factor for triggering embryogenesis and a proper 

chemical surrounding for the embryonically induced cells. This chemical environment is 

present as the endosperm of zygotic and apomictic embryos. Different non zygotic 

development traits in the embryo originate from the cells of nucellus or integuments. The 

first sign of embryonal development after receiving the stimulus is an intensive plasma 

growth of the originally vacuolized single cell. 
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These competent cells are more or less randomly scattered in the nucellus or in the 

integuments, so that afterwards embryogenic competent cells in a given time are restricted 

to only some special cells of the embryo and not to all the cells of this tissue. The 

megaspore mother cell itself develops from a vacuolized cell through accumulation of 

cytoplasm (Maheswari 1979). 

 

 

2.4.2 Variation in Carrot Cultures 

 

 Genetic changes in cultured plant cells are well known and include a wide spectrum 

of alterations, from changes in chromosome number and karyotype (cf. Krikorian et al., 

1983) to single gene changes (e.g., Evans et al., 1984). Changes that appear when 

sporophytic tissue is cultured have collectively been termed “somaclonal variation” (Larkin 

and Scowcroft, 1981) and can generate substantial genetic variability in plants regenerated 

from these cultures (Reisch, 1983). 

 

 It was recognized quite early that carrot cells in culture can exhibit substantial 

variation in chromosome number, both polyploidy and aneuploidy, and chromosome 

morphology (Mitra et al., 1960). However, plants regenerated from those cultures were 

almost exclusively diploid, with the exception of a few tetraploids, and showed no 

cytological abnormalities, at least as observed with the techniques of the day (Mitra et al., 

1960). Large numbers of plants were grown, all of which were phenotypically normal 

(Steward et al., 1964). At that time, it was thought that only cells with an unaltered 

chromosome complement could develop into somatic embryos and plants. Some years 

later, Mok et al. (1976) also reported recovering normal diploid plants from carrot root 

callus from a population of cells with varying chromosome numbers. 

Research work has confirmed the tendency of carrot embryos and plants to be selectively 

regenerated from cells with the normal (diploid) chromosome number, but aneuploids as 

well as polyploids (tetraploids) have also been seen (Toncelli et al., 1985). 

 It is now known that chromosome counts are not entirely reliable indicators that 

genetic change has not occurred. Changes in chromosome karyotype rather than 

complement have been seen in somatic embryos and plants, as in Hemerocallis (Krikorian et 
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al., 1981). Tomato plants that appeared both phenotypically and chromosomally normal 

produced progeny with a range of mutations (Evans and Sharp. 1983). 

 

 In studies of somatic embryogenesis in long-term carrot cultures, embryos and 

plants could be grown, but they were often sterile (Sussex and Frei, 1968). Also, 

morphological variants have been observed in carrot plants regenerated from culture, with 

erect stems and leaf dissection and modifications in leaf thickness and leaf color, but 

changes were epigenetic rather than genetic (Ibrahim, 1969). More recently, through the 

use of specific selection procedures, genetic variants have been observed in carrot, both in 

cultured cells and, in a number of cases, in the plants regenerated from them (Sung and 

Dudits, 1981, Widholm, 1984b). In many cases, these lines have been isolated from 

existing variations in cell cultures, i.e., without the use of mutagens. The selection 

procedures and the mutants isolated are discussed in the next section. A second change 

that can occur in carrot cultures is the loss of the ability to regenerate somatic embryos. 

This occurs gradually during progressive sub culturing (Syono, 1965). Also, changes in 

karyotypic structures occur with increasing time in culture, i.e., as tissue is progressively 

subcultured (Bayliss, 1977, 1980). In one study, the loss of potential was traced to a change 

in chromosome complement when aneuploids gradually replace diploid cells (Smith and 

Street, 1974). However, the loss in a particular culture may not be permanent. In 

habituated Citrus sinensis cultures, embryogenesis was restored by eliminating sucrose  from 

the medium or by aging of the tissue (Kochba and Button, 1974). By moving carrot cells to 

a medium with elevated KIN concentration, a nonembryogenic line became embryogenic 

(Chandra, 1981). Whether this was due to a promotion of cells that had insufficient 

endogenous cytokinins, a selective enrichment of a small number of embryogenic cells in 

the suspension, or de novo induction of embryogenic cells was not determined. The 

addition of activated charcoal has permitted somatic embryogenesis in carrot cultures that 

failed to regenerate when auxin was eliminated (Fridborg and Eriksson, 1975;Drew, 1979). 

 

 The question is the control of genetic and epigenetic variations, i.e., the retention 

of chromosomal and genetic fidelity in cases when cloning is required and alterations in the 

genome, when variants are needed. There are indications that careful attention to 

procedures, such as the frequent establishment of fresh cultures, the use of proper media, 
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and the subculture schedule, can maintain clonal fidelity in both cultures and regenerated 

plants (Evans and Gamborg, 1982, Krikorian, 1982). Embryogenic cultures can be 

maintained for long periods (e.g., Sheridan, 1975). In addition, changes in the genome have 

arisen spontaneously in carrot cultures and have also been induced by mutagens. These can 

be selected for IN VITRO culture to provide useful variant carrot cells and plants. 

 

 

 

2.4.3 Selection of Variants In Carrot Cultures 

 

 

 Carrot cells are easily grown as fine suspensions in culture and can readily be 

planted out following somatic embryogenesis. In addition, cell lines have been maintained 

over a long period with a relatively stable karyotype. Because of these features, carrot cell 

cultures have proven very amenable to the selection of variant cell lines (Flick, 1983). The 

isolation of variant cells has been achieved through the use of a number of selection 

procedures that have produced a wide range of variants. Many of these are stable through 

subculture. There are a few studies where plants regenerated from the lines show the trait, 

as do cells removed from the plants and grown in culture. In some cases, the trait is 

expressed by the cells in culture but not in the regenerated plants. In others, the trait does 

not seem to be the consequence of a genetic change. 

The wide range of variant cell lines isolated include those resistant to inhibitors such as 

amino acid analogs (e.g., 5-methyltryptophan; Widholm, 1974), purine and pyrimidine 

analogs (e.g., 5-fluorouracil;Sung and Jacques, 1980), and antibiotics (e.g., cycloheximide, 

Sung et al., 1981). Color variant mutants have been isolated, including those with 

substantial levels of anthocyanin (Dougall et al., 1980) or carotinoids (Mok et al., 1976), or 

those lacking chlorophyll (Miller et al., 1980). So developmental mutants have been 

isolated (Breton and Sung, 1982; Terzi et al., 1982). 

 Because of the relative ease of selection, most carrot variants have been selected as 

resistant to a particular growth-inhibitory compound, the largest group of these being 

those resistant to amino acid analogs, such as ethionine (Widholm, 1976), 

5-methyltryptophan (Widholm, 1972, 1974), and hydroxyproline (Widholm, 1976). These 
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offer potential practical applications, since resistance to the analog may be gained by the 

overproduction and/or accumulation of high levels of an amino acid, such as increased 

free methionine after ethionine selection, increased free proline after hydroxyproline 

selection (Widholm, 1976), and increased free tryptophan after 5-methyltryptophan 

selection (Widholm, 1972). A mutant selected against the latter demonstrated resistance 

due to decreased uptake than to overproduction (Widholm, 1974). This trait was expressed 

in the regenerated plants and then in the cultured cells removed from the plants (Widholm, 

1974). In another study, a carrot line not resistant to inhibition by lysine plus threonine 

generated plants that were also resistant to these two amino acids (Ammirato, 1985). Both 

callus and plants of the resistant lines contained at least 8 times more free threonine and 

2.5 times more free isoleucine than the wild type (Cattoir-Reynaerts et al., 1983). 

 In a number of cases, cell lines resistant to 5-methyltryptophan and which 

accumulate high levels of free tryptophan are also auxin autotrophic (Widholm, 1977a). 

This appears to be due to high levels of indoleacetic acid, of which tryptophan is a 

precursor (Sung. 1979). However, cell lines selected for auxin autotrophy (ability to grow 

without exogenous auxin in the medium) were not resistant to 5-methyltryptophan 

(Widholm, 1977a). 

Cell lines resistant to other inhibitors have also been selected, and some of these have been 

useful in protoplast fusion studies, e.g. 8-azaguanine resistant cultures that are also 

sensitive to HAT (hypoxanthine, aminopterin, thymidine, and glycine; LoSchiavo et al., 

1983) and cycloheximide resistance (Sung et al., 1981). In addition, albino cells and plants 

that were isolated (e.g., Miller et al., 1980) have proven useful in protoplast fusion product 

selection procedures (Dudits et al., 1977). The appearance of highly colored cells in carrot 

cultures did not lead to regenerated plants with elevated levels of carotinoids (Mok et al., 

1976) or anthocyanins (Dougall et al., 1980). The latter study of specific anthocyanin 

producing clones showed that the synthesis of increased anthocyanin was not caused by a 

mutant gene. However, anthocyanin production in cultures of other species can be selected 

and is consistent (Yamamoto et al., 1982), in carrot suspension cultures, pigment levels do 

respond to cultural variables (Ozeki and Komamine, 1985; Neuman, 1995). Stable color 

variants may one day be produced in carrot. In addition, variant carrot cells hold much 

promise in secondary product synthesis (Hess, 1992). 
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Also of interest are variant lines that may lead to varieties with increased tolerance to 

environmental extremes, such as heat, cold, drought or salinity. Although there has been 

some success in selecting for variant cell lines, such as with cold tolerance 

(Templeton-Somers et al., 1981), the characters have not passed through to the regenerated 

plants as yet. However, a variant cell line tolerant to aluminum, which is harmful to plants 

when present in excess in the soil, did regenerate carrot plants with a similar tolerance 

(Ojima and Ohira, 1982). Furthermore. the tolerance was exhibited in seedlings grown 

from seeds of these regenerated plants. 

Developmental mutants have been selected by using a filtration-enrichment procedure 

(Breton and Sung. 1982;Terzi et al., 1982;Giuliano et al., 1983). In this technique, cells that 

are unchanged develop into embryos in the maturation medium and these can be removed 

by passing the suspensions through filters. Cells that cannot grow or cannot differentiate 

pass through the filter; the filtrate is therefore enriched in cells blocked in growth and 

development. Using these techniques, mutant cells have been selected that can either arrest 

development at a particular stage, or disrupt organized development completely. Among 

the more interesting are temperature sensitive mutants. Somatic embryogenesis and 

maturation can proceed in wild type populations at a range of temperatures from 18 to 32° 

C. Temperature-sensitive mutants will form embryos at low temperature (18° C) but fail to 

do so at high temperature (32° C). These are, then, conditional developmental mutants. 

Investigations are in progress looking for a temperature-sensitive protein accompanying 

somatic embryogenesis. Sung and Okimoto (1981) found two specific proteins that 

appeared in carrot suspension cultures after embryo development had begun. The proteins 

disappeared if the embryos were transferred to media that caused callus formation. The 

proteins were absent in carrot lines incapable of embryogenesis. The pattern of proteins 

synthesized by carrot embryonic cells after heat shock has also been analyzed (Pitto et al., 

1983). These studies hope to provide markers for somatic embryogenesis per se and for 

the various stages of embryonic development. Mutagens have been used in many variant 

selection studies. However, only in a few cases, including one study involving resistance to 

5-methyltryptophan (Widholm, 1977b) and another concerned with resistance to 

cycloheximide (Sung, 1981), were the frequencies of variants substantially higher in 

mutagen-treated cultures. Variants can be isolated from nonmutagenized cultures, tapping 

the variation that appears spontaneously (Evans et al., 1984). 
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2.5 Somatic Embryogenesis 

 

 

 

 It was evident from the first observations, that the development of the somatic 

embryos in carrot cultures strongly resembles the zygotic embryogenesis. Somatic embryos 

often show the same developmental sequence, progressing through globular, heart, 

torpedo and cotyledonary stages. Like zygotic embryos, they develop from single cells 

(McWilliam et al., 1976). Large numbers of somatic embryos can be produced in a small 

volume of liquid, and from them large numbers of plants can be grown (Ammirato. 1984). 

 There are, however, a number of problems. Suspension cultures are a mixture of 

embryogenic and non-embryogenic cells and clusters, and these are of varying sizes and 

numbers. During successive subculture regimes, the cultures may become composed solely 

of non-embryogenic cells, thereby losing the ability to produce somatic embryos and 

plants. Because there is a proembryo decrease when embryo maturation begins, the 

resulting populations of somatic embryos develop asynchronously. In addition the normal 

pathway of development may be diverted (Ammirato, 1985) resulting in a range of 

structurally aberrant forms. These are epigenetic changes, for normal carrot plants can be 

grown from them. Since Steward and Reinert independently discovered somatic 

embryogenesis in carrot cultures (Steward et al., 1958; Reinert, 1959), it has been a model 

system for investigating many aspects of plant cell cultures, in particular morphogenesis, 

and especially somatic embryogenesis cell mutant selection, and somatic hybridization via 

protoplast isolation-fusion techniques. 

 

 

 

2.5.1 Different Forms of Somatic Embryogenesis 
 

 There are two different forms of somatic embryogenesis. Direct embryogenesis, 

arising from a single cell e.g. of the hypocotyl or the petioles, without the necessity of 

callus formation, and indirect embryogenesis, in which a precallus formation is needed. In 

direct embryogenesis, it is obviously the parenchymatic cells that transform into 
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embryogenic cells. In case of indirect embryogenesis, by contrast, a callus will be formed 

and it is from this callus culture that embryos arise. Somaclonal variation of the embryos 

arising through direct embryogenesis is lower than that of indirect embryogenesis, but 

frequency of direct embryogenesis in different plant species is lower than that of indirect 

embryogenesis. For example, till 1990, only 8 plant species showed the characters of direct 

embryogenesis in which 5 of 8 species used embryo cells as the source material for the 

formation of the embryos. In carrot plants, direct embryogenesis is observed in hypocotyl 

and in petiole cells, also in Triticum rubens embryogenesis is observed in hypocotyle and 

petioles cells (Lui et al., 1988). In Dactylis glomerata (Conge et al., 1983) direct 

embryogenesis occurred in cells of the leaf base. In some plants, both forms are observed 

and carrot belongs to this category. Direct embryogenesis can be seen in an obvious form 

in the petiole cells of carrot (Neumann and Grieb, 1992). The material used is a one- cm-

long petiole explant of 6-8 week old carrot plants, sterilized and cultured in a defined 

nutrition solution. 

 

 

 

 

 

2.5.2 MECHANISMS OF SOMATIC EMBRYOGENESIS IN CELL CULTURES: 
PHYSIOLOGY, BIOCHEMISTRY AND MOLECULAR BIOLOGY 

 

 

 Somatic embryogenesis is an ideal system for investigation of the whole process of 

differentiation of plants, as well as the mechanisms of expression of totipotency in plant 

cells. The attempt by Haberlandt to establish plant tissue culture systems provided support 

for a better understanding of the totipotency of plant cells. Thus, the mechanism of 

somatic embryogenesis is one of the most fundamental problems in plant physiology. 

Recently, somatic embryogenesis has attracted attention in plant biotechnology, because it 

provides useful systems to produce transgenic plants, as well as material for the production 

of artificial seeds. 
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2.5.3 High Frequency and Synchronous Somatic Embryogenesis Systems 

 

 

 The first and epoch-making reports on somatic embryogenesis were published in 

1958 by Steward et al. (Steward, Mapes, and Mears, 1958) and Reinert, 1959. In the 

following twenty years, however, little progress was made in understanding the 

mechanisms of somatic embryogenesis, because somatic embryogenesis occurred in vitro 

only at low frequency and asynchronously, in the system used at that time. In such systems, 

biochemical and molecular events specific for embryogenesis should be diluted by the 

activities of cells not engaged in embryogenesis. Furthermore, only average values for 

biochemical parameters related to various stages of embryogenesis could be determined 

when asynchronous embryogenesis systems were used. Thus, high frequency and 

synchronous embryogenesis systems were required for investigation of mechanism of 

somatic embryogenesis at the molecular level. Embryogenic cell clusters were selected by 

sieving with nylon screen and density gradient centrifugation in Ficoll Solution, and then 

transferred to media lacking auxin and containing zeatin at 10-7 M. In this system 

synchronous embryogenesis occurred from cell clusters at about 90% frequency 

(Komamine et al., 1992). This system is useful for investigating the process of 

embryogenesis from embryogenic cell clusters, which are designated as cell cluster stage. 

However, since these clusters can differentiate to embryos in an auxin-free medium 

without any trigger, embryogenesis can be considered to have already been determined in 

embryogenic cell clusters, State 1. Thus, the process of formation of State 1 cell clusters 

from single cells is also important for analyzing the process of embryogenesis, and a 

system is required in which high frequency  embryogenesis occures from single cells. The 

competent single cells, which were small, round and cytoplasm rich and were designated 

state zero cells, were collected by sieving with a nylon screen, density gradient 

centrifugation and manual picking. When State zero cells were pretreated with auxin 

(2,4-D at 5X10-8 M) for 6 days and then transferred to the auxin-free medium, embryos 

were formed at high frequency (85-90%). Auxin pretreatment was essential and zeatin (10-6 

M), mannitol (10-3 M) and a high concentration of oxygen (40%) were promotive 

(Komamine et al., 1992). This system provides a useful method to investigate the whole 

process of somatic embryogenesis from single cells to plants. Furthermore, when State 
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zero cells were cultured directly in auxin-free media, cells were elongated and they could 

not differentiate to embryos even if they were transferred to a medium containing auxin. 

Therefore the process in which State zero cells were cultured in auxin-free media can be 

regarded as the process of controlling of totipotency, while the process in which State zero 

cells were cultured in media containing auxin and differentiated to embryos at high 

frequency, can be regarded as the process of expression of totipotency. These two 

processes are useful to investigate what events occur during expression or losing of 

totipotency. 

 

 

 

2.5.4 Phases in Somatic Embryogenesis 

 

 Detailed morphological observations revealed that four stages, namely zero, 1, 2 

and 3, were recognized in the early process of embryogenesis (Fujimura and Komamine, 

1980). 

 In stage zero, competent single cells (state zero) form embryogenic cell clusters 

(state 1) in the presence of auxin. During this stage, the cell clusters formed from single 

cells gain the ability to develop into embryos when auxin is removed from the medium, 

giving rise to stage 1 cell clusters. The subsequent stage is induced by the transfer of state 1 

cell clusters to an auxin-free medium. During stage 1, cell clusters proliferate slowly and are 

apparently undifferentiated. After stage 1, rapid cell division occurs in certain parts of cell 

clusters, leading to the formation of globular embryos. This stage is designated as state 2. 

In the following stage, state 3, plantlets develop from globular embryos via heart-shaped 

and torpedo-shaped stages. 

 
 
2.5.5 Synchrony of Development 
 

 Embryogenic carrot suspensions contain a range of proembryonic structures and 

nonembryogenic free cells and clusters. For studies of both basic mechanisms and the use 

of carrot somatic embryos for Crop improvement, it is important to separate the various 
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proembryonic structures and reduce the populations of non-embryogenic cells. Two basic 

procedure have emerged and these can be used separately or sequentially to manipulate 

large populations of carrot suspension cultures. 

 One procedure is based on separation or fractionation by size. This can be done by 

sieving. e.g., by means of a graded series of stainless steel mesh sieves (Halperin, 1966; 

Ammirato, 1974; Kamada and Harada, 1979a), or nylon mesh (Fujimura and Komamine, 

1975), or by passing the cells through glass beads (Warren and Fowler, 1977). 

 A second technique is to separate cells by differences in specific gravity, often after 

sieving (Fujimura and Komamine, 1979b). This can be done, first, by density fractionation, 

in which the cells suspended in 10 % Ficoll solution with 2% sucrose are layered on a 

Ficoll discontinuous density gradient (12-18% in water, 8 ml total volume) containing 2% 

sucrose and centrifuged at 50 g for l min, and then at 150 g for 4 min. This is followed by 

velocity sedimentation, in which each Ficoll gradient is suspended in a culture medium and 

centrifuged at 50 g for 30 sec. to remove nonembryogenic cells. The resulting populations 

contain many small proembryos, from 3 to 10 cells each. Upon transfer to the maturation 

medium, more than 90% of the structures form embryos synchronously. An 

alternative technique has been devised by Giuiliano et al. 1983. The suspension culture is 

passed through a nylon sieve with 120-µm pores and then through a second sieve with 

50-µm pore size. The cell masses that are retained on the second sieve are resuspended in a 

maturation medium. After 6-8 days, during which 10% of the somatic embryos have 

reached the torpedo stage, the population is filtered through a l70 µm nylon mesh sieve 

into a petri-dish. The suspension that passes through the sieve consists of at least 95% 

single embryos. Nonembryogenic cells are removed by first allowing the suspension to 

sediment for 15-30 sec. and then aseptically separating most of the medium. Next, the 

suspension is stirred (thus concentrating the embryos in the center) and the surrounding 

medium is separated. This can be repeated to enrich the population of globular 

proembryos, upon addition of fresh medium and growth under appropriate conditions.  

The population consists of 60% heart-shaped embryos in 2 days, and 70% torpedo-shaped 

embryos in 6 days. Each population can be enriched by filtration with sieves of appropriate 

size. The technique yields large quantities of somatic embryos of specific sizes. It does not 

appear to inhibit further embryo maturation and plant development. 
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2.5.6 Expression of Polarities in Early Stages of Somatic Embryogenesis 

 

 

 Rapid cell division occurs in certain parts of cell clusters in stage 2, leading to the 

formation of globular embryos. Cell division is very rapid in this stage, the doubling time 

being 6.3 hr, while it is 51 hr and 36 hr in stage 1 and 3, respectively (Fujimura and 

Komamine, 1980). The polarity of DNA synthesis in cell clusters was confirmed during 

Phase 1-2 by autoradiography using H-thymidine. However, the polarity was lost when cell 

clusters were cultured under the non-embryogenic condition, i.e., in the presence of auxin. 

 The polarized rapid cell division or DNA synthesis is, therefore, considered specific to 

embryogenesis. It is important to investigate the mechanisms of expression of polarity of 

active DNA synthesis and rapid cell division to understand embryogenesis. 

 

 

 

2.6 Factors Affecting Carrot Somatic Embryogenesis 

 

 

 Since the earliest successes were achieved in media supplemented with coconut 

milk or coconut water, attention was focused on the role of complex naturally occurring 

liquid endosperms that normally bathe zygotic embryos in nourishing young somatic 

embryos (Steward and Shantz, 1959; Steward et al., 1969). Subsequent investigations 

showed that both the induction of embryogenic growth and the promotion of maturation 

in carrot cultures could be achieved with totally defined media lacking CW (e.g. Kato and 

Takeuchi, 1963). However, it was during this early period of research that the basic 

requirements for somatic embryogenesis in carrot were demonstrated:  

 

(1) An auxin or auxin-like substance was critical for embryo initiation and the lowering of 

the auxin concentration, or its complete absence fostered maturation (Halperin and 

Wetherell, 1964; Halperin, 1966; Steward et al., 1967). 

(2) Reduced nitrogen was important for both initiation (Halperin and Wetherell, 1964b; 

Halperin, 1966) and maturation of somatic embryogenesis (Ammirato and Steward, 1971). 
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2.6.1 Physiological Factors Affecting Somatic Embryogenesis 
 

 

 

 Auxin is the most important factor in the regulation of induction and the 

development of embryogenesis, and it has different effects in different phases of 

embryogenesis. The presence of 2,4-D or other auxins is required for the formation of 

embryogenic cell clusters (state 1) from single cells (state zero). This indicates that auxin is 

an essential factor in the induction of embryogenesis (state zero). In other words, auxin is 

necessary for “competent” cells (state zero) to express their endogenus totipotency. 

However, auxin is inhibitory on embryogenesis in Phase 1 and in following phases. Auxin 

is most inhibitory in Phase 1. Since the original single cells cannot differentiate directly to 

form embryos in auxin-free media, there are at least two stages in somatic embryogenesis; 

stages requiring auxin and those inhibited by auxin. 

 

 Anti auxins, 2,4,6-trichlorophenoxyacetic acid and Phosphochlorophenoxyiso-

butyric acid (PCIB) inhibited embryogensis after Phase 1 (Fujimura and Komamine, 

1979b). These findings suggest that auxin is required for the induction of embryogenesis 

(the process from competent cells to embryogenic cell clusters), but is inhibitory for the 

development of embryogenesis (the progress from embryogenic cell clusters to plantlets). 

 

 A cytokinin, zeatin, shows a promotive effect on embryogenesis in every phase. It 

is most promotive in Phase 2, in which active cell division occurs. Zeatin may be involved 

in the promotion of cell division. Other phytohormones, e.g. gibberellin and abscisic acid, 

inhibited embryogenesis of cell clusters in carrot culture (Fujimura and Komamine, 1975). 

 Besides phytohormones, cell-to-cell interaction is another important factor in 

somatic embryogenesis. A rather high cell density (10+5 cells/ml) is required for the 

formation of embryogenic cell clusters from single cells (Nomura and Komanine, 1986b), 

whereas a lower cell density (2 X 104 cells/ml) favors the development of embryos from 

embryogenic cells (Fujimura and Komanine, 1979). 
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2.7 Histological Observation in Cultured Petiole Explants 
 

 Histological observation of the petiole explants shows not only different 

parenchymatic cells in different locus of the petiole transsection in the tissue with 

competence for different morphogenetic processes, but also the morphogenetic process 

occurs at a specific time interval. If the callus medium contains IAA as in the case of the 

NL media, or 2,4-D in the case of B5 media, as the stimulus, 2-4 days after the transfer of 

the petiole into the media, the transformation of paranchymatic cells surrounding the 

vascular bundle into cytoplasm rich, rhizogenic competent cells can be seen. The further 

development is not the same. In the culture supplemented with IAA as the auxin source, 

root primordia and adventive roots differentiate 4-6 days after the culture. If however, 

2,4-D is the only auxin source, only rhizogenic centers will be formed. This is a sign of a 

specific growth, but root primordia do differentiate when the stimulus is the auxin IAA. 

After the removal of the 2,4-D, it is also possible that adventive root will be formed. This 

indicates that the competence for rhizogenesis is always there, and the further 

development and the realization stop in the culture supplemented with auxin 2,4-D. In NL 

medium, the formation of the caulogenic centers in the large parenchematic cells of the 

petiole can be observed after a few days. During further culture with both auxin forms, 

after 12-14 days sub-epidermal cell layers transform directly without predivision into 

cytoplasmic rich embryogenic competent cells. Interestingly enough, these cells are located 

near the vicinity of the glandular channels (Neumann, 1995). Hence the process of 

embryogenesis differes if different auxines are used, as use of IAA leads mostly to direct 

embryo development. A single cytoplasmic rich cell divides into 2 and then 4 parts, and 

then this leads to pre-globular, globular, heart, torpedo and finally plantlet forms. Using 

2,4-D as the auxin supplement with a concentration of 0.5 ppm leads to indirect embryo 

formation. Many cell aggregates form embryogenic meristems, also called PEMs 

(Pro-Embryogenic Masses). The masses of cells disattach themselves from the ground 

tissue after splitting of the petioles and rupturing of the epidermis, and suspend in the 

liquid solution. After transfer to an auxin free medium, these structures go through the 

globular, heart, torpedo stages and form plantlets. In both cases, if the auxin used is IAA 

or 2,4-D, malformed embryos can be seen. The reason for this phenomenon is not clear. 

After the stimulus has functioned, induction of embryogenesis follows. At this stage the 
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cells are embryogenic competent and they divide. This phase is called the reproduction 

phase. Most probably, the realization of the embryogenesis program is blocked through the 

addition of auxin, for example, when the cells of a cell suspension culture are transferred 

into auxin containing media. 

 

 Parallel to the morphological and histological studies, there are some studies, which 

have been conducted regarding the developmental pattern in the petiole explants of carrot 

dealing with the hormone system and the pattern of the protein synthesis (Grieb, 1992). 

Characterizing the hormone system dealing with IAA, ABA and six different cytokinines 

during the induction phase shows changes in the hormone concentration during different 

developmental stages (Grieb et al., 1997). In the first days of culture in a petiole system, 

IAA and ABA dominate the process, but later the concentration of cytokinines increases. 

Studies on protein synthesis during the culture of petiole explants give valuable hints, such 

as the specific pattern of the protein synthesis during the induction phase. The protein 

synthesis pattern linked with the use of radioactive isotope and two dimensional 

electrophoresis gives relevant information about the formation and the characteristics of 

proteins during different embryonal stages. 

 

 

2.8 Nitrogen Metabolism 

 

 There are two ways to cover the nitrogen requirements of the cells in a liquid 

culture. First, the application of ammonium or nitrate or both as the source of inorganic 

nitrogen, and second, the use of amino nitrogen present in different amino acids. The 

amino acids can be added separately or as a mixture of different amino acids e.g. addition 

of casein hydrolysate. Amides in form of urea or glutamine can be used as a nitrogen 

source in the cell culture too. Ammonium or nitrate each can be used as the only source of 

nitrogen in the cell culture. Experiments with tobacco cell culture showed that cells 

proliferate better in a medium containing nitrate as the only nitrogen source through which 

there is a marked increase in cell dry weight. Cell proliferation is higher, and there is an 

increase of the pH value in the medium by comparison with the ammonium treatment. 

(Elsner, unpublished, Institute for Plant Nutrition, Department of Tissue Culture JLU, 
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Giessen). This is an indication of lower cell division activity of the ammonium treatment. 

Cell development of both treatments is nearly the same. The assimilation of ammonium is 

against exchange for H+-ions in the culture medium. This aspect makes it interesting to 

investigate how important the pH value is, and what role the pH plays in the process of 

ammonium assimilation. In the meantime, one must not forget the competitive process of 

ammonium against other cations present in the nutrition solution. In some liquid media, 

both forms of inorganic nitrogen are used e.g. in the MS medium. In this medium, it seems 

there is a timely preferential selectivity for the amino form of nitrogen. Later on, cells use 

nitrate for their metabolic activities (Neumann, 1995). Ammonium is a reduced form of 

nitrogen, hence it can be readily used for the synthesis of amino acids. Nitrate as an 

oxidized form of nitrogen must first be reduced. This process needs some energy source 

from metabolism of the cell. The reaction process is managed by two enzymatic processes. 

The enzyme nitrate reductase (NR), which is localized in the cytoplasm, reduces nitrate to 

nitrite. Further reduction to ammonium occurs through an in plastids localized enzyme, 

nitrite reductase (NIR). After this glutamic acid can be produced through glutamine 

synthetase and glutamate synthetase (GS-GOGAT). In this way inorganic nitrogen changes 

to an organic form in which glutamic acid is formed. In rose suspension culture, nitrate is 

used as the only source of nitrogen, two days later, the culture concentration of the 

ammonium in the cells were 0.4 µ mol/g fresh weight and the nitrate 1.2 µ mol/g fresh 

weight. Four days after the culture began, nitrate concentration increased to 2.3 µmol/g 

fresh weight, and five days after the culture amide concentration reached its maximum 

level of 5.9 µ mol/g fresh weight. Increase in the amide concentration shows that the 

amount of the reduced nitrogen is more than the actual need for nitrogen, so that the 

amino acid synthesis mechanism cannot process the produced surplus of the reduced 

nitrogen. Determination of the pattern of the enzyme activity measured in relation to the 

application of the nitrate form of nitrogen shows that the enzyme glutamine synthetase 

processes more nitrogen than is the nitrogen requirement of the cell (“Pauls Scarlet Rose” 

after Fletscher, 1982). According to this data, the restricting enzyme is probably glutamine 

synthetase or GOGAT. To find out how far the accumulation of ammonium in the 

vacuole and the cytoplasm influences the feed-back mechanism of nitrate- and nitrite 

reductase, the culture is supplemented with nitrate and the glutamine synthetase blocking 

agent methionin sulfoximin. After 30 minutes of application, the concentration of 
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ammonium in the cell becomes ten-fold and after 4 hours it is increased to seventy-fold of 

the normal concentration. Despite this concentration of ammonium the activity of nitrate 

reductase was reduced. It is not quite sure to postulate that the preference of the cells for 

ammonium nitrogen and not nitrate is due to high levels of ammonium concentration in 

the cell and subsequently blocking of the enzyme nitrate reductase in which nitrate uptake 

is minimized or stopped. There must be some other reason and a specific mechanism for 

this phenomenon (Neumann, 1995). The transfer of an amino group of a glutamine to 

oxoglutarat needs energy. In this process, two molecules of glutamic acid will be produced. 

This energy can be provided either through the electrons from ferredoxin localized in 

chloroplast (Hill-Reaction), or it can be gained from NAD(P)H2. 

 Tissue culture experiments with carrot and soya bean suspension culture show that 

only the pyridin nucleotide dependent glutamine synthetase is of importance. Tobacco 

cultures showed some deviation from this. An experiment is conducted using etiolated and 

non-etiolated cells. Activity of the NAD(P)H2 after 21 days of culture remained the same 

in both culture forms. Ferredoxin enzyme-dependent activity however increased many 

fold. Ferredoxin-dependent enzyme activity depends more or less on chlorophyll 

formation and the formation of chloroplasts, and so correlates to the intensity of the 

photosynthesis. In both etiolated and non-etiolated treatments, ferredoxin-dependent 

enzyme activity influenced the NAD(P)H2-dependent enzyme activity. Enzyme 

immunological assays show that these two processes deal with two quite different enzyme 

proteins. Activity of the pyridin nucleotide NAD(P)H2-dependent glutamine synthetase in 

non-etiolated cells was 10 % of the activity of ferredoxin-dependent  enzyme. It was nearly 

as active as the NADH and NAD(P)H2-dependent enzyme presuming that both can serve 

as an energy donor for the reduction equivalent. In etiolated cultures the relationship was 

3:1 with the fact that the ferredoxin dependent enzyme was dominant (Suzuki and Nato, 

1982). 

 In cell culture, the determined activity of glutamine dehydrogenase in the first 

instance needs NADH as a reduction equivalent to be able to use the amino group. 

NADPH as co-factor showed an activity of 20 % in comparison to NADH. Experiments 

with tobacco callus culture and intact plant show that the enzyme localized in the 

mitochondria of the cell which is responsible for the conversion of nitrogen into organic 

form plays a minor role quantitatively, but is nevertheless related to the excess of 
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ammonium concentration in the cell. In many cases, blocking of the glutamine synthetase 

with the use of methionine sulfoximin shows an increase in the enzyme glutamate 

dehydrogenase. 

Application of ammonium as the reduced form of nitrogen can lead to growth of a more 

friable callus, which from a technical standpoint is of importance. Application of nitrate in 

addition to ammonium leads to an increase of the cell suspension vitality, as in the case of 

the MS medium. By keeping a constant concentration of the nitrogen, one can obtain the 

same cell growth using an organic form of nitrogen or even using a mixture of organic and 

inorganic nitrogen forms. The source of the organic nitrogen used in the media is either 

urea or a mixture of different amino acids, added separately or in combination as casein 

hydrolysate. There are many reports in the literature concerning the beneficial effects of 

using amino acids e.g. glutamic acid and its amid glutamine. On the basis of the 

experiments conducted by the Steward group at Cornell in the early sixties, it has been 

postulated that right after the beginning of the experiment the protein content of the 

carrot root explants increases. These series of experiments were carried out, using coconut 

milk as a supplement to the liquid media. Later it was shown that the quantity and the 

maximum levels of protein synthesis could be influenced by the application of cytokinin, in 

this case in the form of kinetin (Neumann, 1995). 

 

 

 

2.8.1 Reduced Nitrogen 

 

The initial observations of somatic embryos by Steward and Reinert were with cultures 

containing complex media, including CW and casein hydrolysate, both of which serve as 

sources of reduced nitrogen. The specific requirement for ammonium in carrot somatic 

embryogenesis was reported by Halperin and Wetherell (1964b). Most culture media used 

for somatic embryogenesis contain ammonium nitrate (Ammirato, 1984). The source of 

reduced nitrogen may vary, and complex agendas (e.g., CW), mixtures of amino acids 

(Kato and Takeuchi, 1966) and single amino acids have all been successfully employed 

(Wetherell and Dougall, 1976). Alanine and glutamine were superior when nitrate was also 

present (Kamada and Harada, 1979b). In media lacking nitrate, glutamine was superior to 
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other amino acids added singly, and ammonium could serve as the sole nitrogen source if 

the proper pH was maintained (Dougall and Verma, 1978). Studies of changes in 

endogenous amino acid levels (Kamada and Harada, 1984) have shown that glutamic acid 

and glutamine accumulated in carrot cells during embryo maturation, but alanine did not. 

Alanine, which was far superior to ammonium in promoting somatic embryogenesis 

(Kamada and Harada, 1979b), occupies a central position in amino acid metabolism and 

was most likely transformed into other amino acids during embryo development. 

Restricting access to reduced nitrogen may be one way to control synchrony (Kamada and 

Harada, 1979b). 

Proline has been shown to a have a beneficial effect on the course of somatic 

embryogenesis in alfalfa (Stuart and Strickland 1984b). The effect of proline is dependent 

on ammonium levels (Stuart and Strickland, 1984b). At certain concentrations, it serves to 

improve the “quality” of mature embryos, i.e., to produce a more normal structure and 

facilitate higher levels of germination or the conversion of embryos to plantlets. Proline 

and serine added to culture media during the growth of carrot suspensions stimulated 

growth, but also markedly altered the normal development of the embryos (Nuti Ronchi et 

al., 1984). Polyamines have also been shown to play a role in carrot somatic 

embryogenesis. Embryonic cells, in comparison to non-embryonic cells, show increased 

levels of polyamines, in particular putrescine and spermidine (Montague et al., 1978). The 

level of arginine concentration of arginine decarboxylase is important since arginine serves 

as a precursor in polyamine synthesis (Montague et al., 1979). A cell line resistant to the 

inhibitor 5-fluorouracil, which regenerated poorly, also had significantly less arginine 

during proliferative growth (Sung and Jacques, 1980). Cell suspensions treated with 

putrecine in the presence of 2,4-D and arginine produced globular embryos that failed to 

develop further when transferred to media lacking 2,4-D and putrescine, but did develop if 

subsequently transferred to a medium lacking arginine (Bradley et al., 1984). Feier et al. 

(1984) were able to inhibit embryogenesis by using difluoromethyl arginine, an inhibitor of 

polyamine synthesis. A mutant cell line that grows at the same rate as the wild type line in 

embryogenic medium does not show the characteristic increase in spermidine and 

spermine levels found in embryogenic cultures (Feinberg et al., 1984). In addition, 

exogenous auxin (2,4-D), which prevents embryo maturation but not proliferation of the 

suspension, suppresses the activities of two polyamine biosynthetic enzymes, arginine 
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decarboxylase and S-adenosylmethionine decarboxylase. Increases in polyamines appear to 

be specific to embryo maturation rather than cell growth. 

 

2.9 Protein Synthesis 

 

 

 According to the experiments conducted by Neumann in the year 1975, kinetin 

negatively influences the amount of the protein and RNA in the cell suspension culture. In 

this experiment, however, the content of the protein and RNA density of the cell 

suspension culture increased per cell through the application of kinetin in a 28-days-old 

carrot cell suspension culture. Kinetin, according to Neumann, has not only an influence 

on the protein and the RNA content of the culture, but also affects the activity of some 

enzymes. According to his experiments, through the application of 0.1 ppm kinetin in NL 

medium, activity of the enzyme aldolase increases until the seventh day of the culture, but 

decreased rapidly afterwards as the culture proceeds further. By contrast enzyme activity of 

Rubisco increased very slightly till the 21st day of the culture but accelerates rapidly 

afterwards. Fumerase shows the same pattern as aldolase, that is, it reaches its peak at the 

seventh day of the culture, but beyond that day the activity of the enzyme drops drastically. 

The fate of PEPcase is quite different from the others. It shows a moderate increase till the 

21st day of the culture and decreases in the same moderate manner. In this experiment, 

Neumann showed in both the cultures with and without kinetin supplementation to the 

nutrient solution, that there is an increase in the protein content of the cells in the log 

phase, and a decrease in protein content per cell in the linear phase of dividing, active cells. 

Kinetin, according to him, decreases the protein and RNA content of the dividing cells. 

This decrease is correlated, however, to the decrease in cell size in this growth stage. The 

fresh weight of the cells after the seventh day of culture decreased, but the number of the 

cells increased. With the increase in the cell size at the end of the log phase and after the 

transition to the stationary phase of the cell division, however, the protein content 

increases. This pattern is identical for both of the cultures, whether kinetin is added to the 

culture or not. This increase in the protein content is based on fresh weight, but if the dry 

weight is measured, it can be shown that the kinetin supplemented treatment, although 

showing less protein content on fresh weight measurement, shows a higher protein content 
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on the basis of dry weight per cell measurements. This phenomenon can be explained 

through the fact that the more intensively dividing, small cells of the kinetin treatment 

possess more cytoplasm per weight unit. Activity of the protein synthesis is not only 

controlled through plant hormones, other factors influence it too. Iron, for example, plays 

an important role in the protein synthesis. Iron deficient, kinetin supplemented carrot cell 

cultures show lower cell division activity than the kinetin-free treatment supplemented 

with sufficient iron. However, average cell fresh weight and cell size become five-fold. If 

the iron in the kinetin free treatment is deficient, this increase is less significant. Less 

proliferated growth in the kinetin free treatment in the first instance can be the result of 

lower cell division activity, in which the cell growth is not affected. In the iron deficient 

treatment, as a result of a lower cell division activity, however, cell growth is affected. In 

the iron deficient treatment, however, concentration of the soluble amino acids is higher. It 

can be postulated that iron deficiency specifically prohibits protein synthesis and 

subsequently cell growth. Less proliferation of cell growth in the kinetin free treatment, 

can in the first instance, be the result of lower cell division stimulation with a rather 

qualitative impact on protein synthesis. A comparison of the protein turnover of these two 

different treatments shows a lower metabolic stability in the proteins of the kinetin free 

treatment, as compared to the control.  In the iron deficient treatment, protein metabolic 

stability is nearly identical with the standard, the quantitative level, however, varies. It can 

be concluded that iron plays a significant role in the primary synthesis of proteins. On the 

basis of this experiment, in which the protein synthesis is measured according to fresh 

weight of the cells, one can postulate that the decrease in the cell division activity of the 

iron deficient treatment, in comparison to the control, is the consequence of blocking 

protein synthesis and in the kinetin-free treatment, mainly the consequence of higher 

protein turnover of a preferential synthesis of metabolic unstable, soluble, cytoplasmic 

protein fractions. In the kinetin-free treatment, the formation of adventive roots is 

observed plus a lower cell division activity. This was not the case in the iron-deficient 

treatments, so that it can be stated that the reason for the lower cell division activity and 

metabolic processes can also be embedded in the morphogenic potential of the cultured 

cells. Not only kinetin but also 2,4-D suppresses the formation of the adventive roots in 

the culture (Neumann, 1995). 
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2.10 Other Inorganic Nutrient Sources 

 

 

 

 In addition to nitrogen, other elements are also required by cells in culture. These 

include inorganic salts that are provided in relatively large amounts (macro nutrients) such 

as potassium, magnesium, calcium and sulfur (usually as sulfate), phosphorus (as 

phosphate) and iron. Both sodium and chloride are usually present. In addition, there are 

traces of other elements (micro nutrients), and these include copper, zinc, manganese, iron, 

boron and molybdenum. Most basal media supply all the essential macro- and micro-

nutrients. With reference to carrot cell cultures, specific requirements for potassium ion 

(Reinert et al., 1967; Tazawa and Reinert, 1969) and phosphate (Tazawa and Reinert, 1969) 

have been shown. 

 

 

 

 

 

2.11 Carbohydrates 

 

 

 Many mono- and disaccharides can support the initiation and development of 

carrot somatic embryos (Verma and Dougall, 1977), although sucrose appears to be most 

effective and is the most widely used (Ammirato, 1983). Glucose has also been a superior 

carbohydrate source (Homes, 1967). Elevated sucrose levels and increased osmolarity can 

prevent early germination, but these treatments tend to increase the frequency of 

secondary or accessory embryo formation (Ammirato and Steward, 1971). Increased 

osmotic concentration of the medium lead to plasmolysis of explanted cells and enhanced 

somatic embryogenesis (Wetherell, 1984). By increasing the inositol concentration while 

lowering sucrose concentrations, both germination and extraneous proliferation were 

prevented (Steward, et al., 1975). Such control of somatic embryo development can also be 

affected by ABA. 
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2.12 Growth regulators 

 

 

 

 

2.12.1 Auxin 

 

 

 Although somatic embryos can arise from explanted cells without an exogenous 

auxin source, particularly if the cells are embryonic, auxin appears essential for initiating 

carrot somatic embryogenesis (Ammirato, 1983). Many sources of auxin have promoted 

embryogenic cell proliferation in carrot, including IAA (Sussex and Frei, 1968), NAA 

(Ammirato and Steward, 1971) and 2,4-D (Halperin, 1966). However, the stronger auxins 

such as 2,4-D seem particularly effective (Fujimura and Komamine, 1980; Ammirato, 

1985). Auxin appears essential for the initiation of embryonic growth, but inhibits 

embryonic maturation. 

 

 

 

 The usual procedure is to move the cells to a medium lacking auxin, containing the 

same auxin at a lower concentration, or containing a different auxin, usually at a lower 

concentration (Ammirato, 1983). However, in wild carrot suspensions, it is possible to get 

large numbers of globular embryos in a medium with 2,4-D by diluting the suspension 

with fresh medium, thereby lowering the density to 20 000 cells per ml (Sung and 

Okimoto, 1981). However, the embryos do not proceed through the remaining stages of 

maturation. Somatic embryogenesis in carrot has been inhibited by 2,4,6- 

trichlorophenoxyacetic acid and p-chlorophenoisobutyric acid (Fujimura and Komamine, 

1979b). However, the authors pointed out that responses to anti-auxins were at the early 

stages of embryogensis, when young embryos are also sensitive to auxin in the medium. 

The embryo maturation occurs when embryos are removed to an auxin-free medium. 
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2.12.2 Cytokinins 

 

 

 

 Carrot somatic embryos will mature fully in a medium free of exogenous growth 

regulators provided the density of cells is correct (Ammirato, 1985). However, the addition 

of exogenous growth regulators can benefit development, particularly within certain 

parameters. Cytokinins have been shown to be necessary for carrot somatic embryo 

development (Fujimura and Komamine, 1980) and particularly for cotyledon development 

(Ammirato and Steward, 1971). If present in the medium but not required for growth, they 

can stimulate aberrant maturation, such as in caraway cultures (Ammirato, 1977). They also 

counter the growth inhibitory effects of ABA (Ammirato, 1977). The specific type of 

cytokinin may be important, e.g., in one study, only ZEA but not BA or KIN benefited 

carrot somatic embryogenesis (Fujimura and Komamine, 1975). 

 

 

 At low cell densities, proembryos typically will not mature (Halperin, 1967). ZEA 

promoted maturation in low-density caraway cultures, being most effective in combination 

with ABA (Ammirato, 1983a). ZEA in combination with NAA fostered carrot somatic 

embryo formation directly from protoplast-derived cells, without an intervening callus 

phase (Dudits et al., 1976a). 

Although not required for cell growth, KIN was shown to maintain an embryo forming 

potential in long-term cultures (Wochok and Wetherell, 1971;Reinert, 1970). In another 

study contrasting the responses of embryogenic and non-embryogenic lines (Chandra, 

1981), one passage of the non-embryogenic cells on a medium with high levels of KIN (9.3 

µM KIN + 0.45 µM 2,4-1) resulted in somatic embryogenesis when the cells were 

transferred to a 2,4-D-free medium. If the line was maintained on the standard medium for 

embryogenic cells (0.93 µM KIN + 0.22 µM 2,4-D), only roots formed when transferred to 

a 2.4-D-free medium. The embryogenic line readily formed somatic embryos with this 

latter procedure. 
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2.12.3 Gibberellins 
 
 
     These growth-regulating compounds are rarely used in carrot somatic embryogenesis. 

GA1 can inhibit embryogenesis in carrot suspension cultures (Fujimura and Komamine, 

1975;Tisserat and Murashige, 1977). However, in caraway somatic embryos, GA3 can 

promote embryo maturation in combination with ABA, and interacts with ZEA and ABA 

in modulating the course of development (Ammirato, 1977). 

 

 

 

 

2.12.4 Abscisic Acid 

 

 

 This naturally occurring growth-inhibitor selectively inhibits certain morphogenetic 

events during carrot somatic embryogenesis. First observed in caraway cultures (Ammirato, 

1974), ABA will also affect carrot somatic embryo maturation (Ammirato. 1983a). It 

inhibits abnormal embryo development, including cotyledon malformation, prevents new 

centers of embryo initiation, and represses precocious germination. It does not inhibit the 

progression of the small, globular proembryo through the regular sequence of 

development. The effect of ABA, then, is to foster normal embryo maturation. 

 

 

 

2.12.5 Ethylene 

 

 This naturally occurring growth regulator has been shown to inhibit the initiation 

of carrot somatic embryogenesis (Tisserat and Murashige, 1977). Some studies have 

suggested that ethylene is not found in embryogenic wild carrot suspension cultures, and 

that the addition of low levels (l-10 µM) of l-aminocyclopropane carboxylic acid, a 
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compound that triggers ethylene synthesis, enhances embryo maturation (Verma et al., 

1985). 

 

 

2.13 Perspectives 

 

 The final goal of studies on somatic embryogenesis is an understanding of its 

mechanisms at the molecular level. The establishment of a high-frequency and 

synchronous embryogenesis system promoted the elucidation of the mechanisms of 

somatic embryogenesis. 

 

 However, it is still a hard way. More and more genes involved in embryogenesis 

have been and will be revealed. Regulation of expression of these genes will also be 

elucidated by molecular biological techniques. It can be investigated whether or not a gene 

isolated as a specific one for embryogenesis plays a critical role in embryogenesis by the 

introduction of anti-sense RNA or at specific stages using microinjection or other 

techniques and by observation of the following fate of treated cells or cell clusters. Mutants 

with various developmental stages of embryogenesis provide useful tools for the genetic 

analysis of influence on embryogenesis (Lo-Schiavo et al., 1988). But it will still be difficult 

to know the biochemical function of a gene if it is a novel one. Furthermore, several or 

rather many genes can be involved in the induction and development of embryogenesis, 

which may be regulated by the balance of expression of the genes. This will make the 

analysis of the mechanisms of embryogenesis at molecular level more complicated. 

Thus, we have many problems to solve the mechanisms of somatic embryogenesis 

However, the most fundamental and characteristic function of plant cells, totipotency, 

should be elucidated using high frequency and synchronous somatic embryogenesis in cell 

cultures. 
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3 MATERIAL AND METHODS 

 

 

 

 

 

3.1 Plant Material 
 

 

When not stated otherwise experiments are conducted with Daucus carota sativus L. German 

variety Rotin. Seeds are sown in soil in a tray of 32 cm x 25 cm x 5 cm at 22°C and a 

relative humidity of 55 % under constant light conditions using ca. 4000 Lux (Osram, 

Lumilux White). 

 

 

 

 

3.2 Tissue Culture 
 
 

 

3.2.1 Culture Condition 

 

 

The temperature during the culture was maintained at 28°C under constant illumination 

using ca. 4000 Lux (Osram, Lumilux White). The vessels used for the liquid cultures were 

either normal Erlenmeyer flasks or T-tubes with a capacity of 15 ml basal nutrient medium. 

The opening of the tubes were closed using three-fold aluminum foil and hung on the 

Auxophyton, modified by Neumann in year 1965 with a revolution of 1 RPM, to enable 

more supplementation of the basal medium with oxygen. 
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3.2.2 Modified B5 (Gamborg et al., 1968) Basal Medium for Plant Cell and Tissue 
Culture 

 

The basal medium used is a modification of B5 (Gamborg et al., 1968). The pH of the 

medium is adjusted to 5.7-5.8 and autoclaved at 134 °C with a pressure of 2.1 bar for 40 

minutes. 

 

 

Composition of Modified B5 (Gamborg et al., 1968) Basal Medium 

 

B5 Major salts (10 X), g/l  Aqua dest 
 
NaH2PO4 X 2 H2O 1.50
KNO3 30.00
(NH4)2 SO4 1.34
MgSO4 X 7 H2O 5.00
CaCL2 X 2 H2O 1.50
  
  
 

B5 Minor salts (10 X), mg/l  Aqua dest 
 
MnSO4 X H2O   100.00
H3BO3 30.00
ZnSO4 X 7 H2O 20.00
Na2MoO4 X 2 H2O 2.50
CuSO4 X 5 H2O 0.25
KI 0.25
  
  
 
Iron-EDTA solution (10 X), mg/100 ml  Aqua dest 
 
Fe - EDTA 463.00
 
 
Mg  Salt g/l Aqua dest
 
MgSO4 X 7 H2O 36.00
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B5 Vitamins (10 X), mg/100 ml Aqua dest 
 
Nicotinic acid 50.00
Thiamin 10.00
Pyridoxine 10.00
  
  
 

 

 

 

Stock Solution of Growth Regulators (10 X), mg/100 ml Aqua dest 
 
myo - Inosit 5000.00
2, 4-D 100.00
  
  
 
 
 
Preparation of Basic modified B5 Medium, l  
  
 B5+    B5- 
  
Sucrose  (g) 20.00 20.00 
Casein hydrolysat (mg) 250.00 250.00 
Major and Minor Salts (ml) 100.00 100.00 
Iron-EDTA Stock (ml) 10.00 10.00 
Mg Stock (ml) 7.00 7.00 
Vitamin Stock (ml) 1.00 1.00 
Inosit Stock (ml) 10.00 10.00 
2, 4-D Stock (ml) 5.00 ------- 
   
Adjust the pH to 5.7 - 5.8   
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3.2.3  B5 (Gamborg et al., 1968) Basal Medium for Plant Cell and Tissue Culture 

Basal medium of B5 (Gamborg et al., 1968). 

The pH of the medium is adjusted to 5.7 -5.8 and autoclaved under 134 °C with a pressure 

of 2.1 bar for 40 minutes. 

 

 

 

 

Composition of B5 (Gamborg et al., 1968) Basal Medium 
 

 

B5 Major salts (10 X), g/l  Aqua dest 
 
NaH2PO4 X 2 H2O 1.50
KNO3 25.00
(NH4) 2SO4 1.34
MgSO4 X 7 H2O 2.50
CaCL2 X 2 H2O 1.50
  
  
 

B5 Minor salts (10 X), mg/l  Aqua dest 
 
MnSO4 X H2O   100.00
H3BO3 30.00
ZnSO4 X 7 H2O 20.00
Na2MoO2 X 2 H2O 2.50
CuSO4 X 5 H2O 0.25
KI 7.50
CoCl2 X 6 H2O 0.25
  
  
 
Iron-EDTA solution (10 X), mg/100 ml  Aqua dest 
 
Na - EDTA 373.00
FeSo4 X 7 H2O 278.00
  
  
B5 Vitamins (10 X), mg / 100 ml  Aqua dest 
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Nicotinic acid 100.00
Thiamin HCl 100.00
Pyridoxine HCl 100.00
myo - Inosit 1000.00
  
  
 

 

 

 

 

 

Stock Solution  of Growth Regulators (10 X), mg/100 ml Aqua dest 
 
2, 4-D 100.00
  
  
 

 

 

 

 

 

Preparation of Basic B5 Medium, l  
  
 B5+    B5- 
  
Sucrose  (g) 30.00 30.00 
Major and Minor Salts (ml) 100.00 100.00 
Iron-EDTA Stock (ml) 5.00 5.00 
Vitamin Stock (ml) 10.00 10.00 
2, 4-D Stock (ml) 5.00 ------- 
   
Adjust the pH to 5.7 - 5.8   
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3.2.4 Petiole Culture 
 

 

5-6 cm long petioles of a 2.5 - 3.5-weeks-old carrot plant are washed in distilled water, 

then, for the purpose of surface sterilization, immersed first in 70 % ethanol for one 

minute, then the petioles are immersed in a solution of Na - Hypochlorid (1 : 2 water with 

5 % active chloride). One drop Tween 80 is added to lower the surface tension. The 1 cm 

terminal ends of the petioles are cut and the rest is washed five times with sterile distilled 

water. The petioles are cut into pieces 1 cm long, and 4-6 pieces are placed in a T-tube 

containing 15 ml of the B5 basal medium and 0.5 ppm of the synthetic auxin 2.4-D for two 

weeks. For the realization of somatic embryogenesis, the petioles are washed with a 

hormone-free basal medium for 30 to 60 minutes and then transferred to a hormone-free 

basal medium, where they produce globular, heart, torpedo stage and finally small plantlets. 

 For the histological examination, the petioles are cultivated with different time 

intervals in an auxin containing basal medium. These intervals are t0 (zero) which means 

the petioles excised freshly from the carrot plant are cultured for only five hours in an 

auxin-containing basal medium. t7, t14 means the petioles were cultured for 7 days or 14 

days in an auxin containing basal medium. 

 

 

 

3.2.5 Establishment of Cell Suspension Cultures 
 
 
3.2.5.1 Callus Culture 
 
 
As above mentioned, the desired plant part is surface sterilized and placed in sterile 

condition on a solidified basal medium. After a few weeks, the callus can be observed 

macroscopically. The formed callus is cut into small pieces and transferred to a liquid 

medium containing auxin. 
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3.2.6 Maintenance of Cell Suspension Culture (0.5 ppm 2,4-D) 
 

 

 

 

Under sterile conditions the suspension culture has been sieved through a 90 µ sieve and 

the suspension let to stand for 30 minute. Afterwards, the supernatant solution is decanted, 

keeping only the cells and a portion of the basal solution. The cells are transferred into a 

graduated cylinder. Add as much of the previously prepared sterile basal media, so that the 

cells constitute 10 % of the whole volume. The petiole explants were examined 

macroscopically and microscopically for the presentation of the embryonal structures. 

 

 

 

 

 

 

3.3 Somatic Embryogenesis 
 

 

 

Somatic embryogenesis has four phases 

- Induction of somatic embryogenesis 

- Preservation and multiplication of the embryogenic potential 

- Realization of somatic embryogenesis 

- Regeneration of plants 
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3.3.1 Somatic Embryogenesis in the Petiole Explants 

 

 

 

 

For the induction of somatic embryogenesis, the petioles are first cultivated for 14 days in 

an auxin containing B5 basal medium and for the realization of somatic embryogenesis the 

cultivated petioles are washed thoroughly with the B5 basal medium without auxin for 30 

to 60 minutes and later subcultured in T-tubes containing B5 basal medium without the 

auxin 2,4-D. 

 

The section of the petioles are examined at different time intervals, e.g. 7 and 14 days. In 

some cases, time intervals of 21 and 28 days have been considered too. During the 

microscopic examination of the petioles, different histological methods and staining 

agents, e.g. Hematoxyline, Eosin, neutral red and Safranin fast green, were used to show 

changes in tissues and cells caused by different treatments, e.g. increase of the cytoplasm 

content of the cells, etc. 

 

 

 

 

3.3.2 Somatic Embryogenesis in Cell Suspension Culture 
 
 
 
As mentioned above the desired plant part is surface sterilized and placed under sterile 

conditions on a solidified basal medium.  After a few weeks, callus can be observed 

macroscopically.  The callus is cut into small pieces and transferred to an auxin containing 

liquid medium to obtain cell suspension culture. 

 

Under sterile conditions, suspension culture is sieved through a 90 µ sieve, 10 ml of the 

culture is transferred into a sterile, conical, calibrated centrifuge tube and spun at 300 g for 
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10 minutes. The supernatant solution is poured off. Then as much of the sterile solution is 

added to the conical, calibrated centrifugal tube so that the total volume of the cells and 

the solution reaches 10 ml. This is repeated 3 times. The required amount of packed cell 

volume of the cell suspension for the realization phase without auxin is 0.5 % PCV. For 

the evaluation of the realization phase, tissue culture is macroscopically and 

microscopically examined.  

 

 

 

 

 

 

 

3.3.3 Investigations Related to the Role and Effect of Different Nitrogen Forms 
During the Realization Phase of Somatic Embryogenesis in Carrot Petiole and 
Suspension Culture 
 
 
 
 
- Casein hydrolysate as the sole nitrogen form in the nutrient solution during the   

realization phase of the somatic embryogenesis 

 

- Ammonium as the sole nitrogen form in the nutrient solution during the realization phase 

of somatic embryogenesis 

 

- Nitrate as the sole nitrogen form in the nutrient solution during the realization phase of 

the somatic embryogenesis 

 

- Determination of pH and pK values 

 

- Determination of chlorophyll and Anthocyanin in plant material 



 40

3.3.3.1 Modified B5 (Gamborg et al., 1968) Basal Medium for Plant Cell and Tissue 
Culture Containing Different Nitrogen Forms 

 

 

The basal medium used is a modification of B5 (Gamborg et al., 1968). There were three 

different nitrogen sources which are used in preparing the stock solution, namely, casein 

hydrolysate as an organic nitrogen source, (NH4)2SO4 as the reduced form of nitrogen, and 

KNO3 as the oxidized form of nitrogen. The pH of the medium is adjusted to 5.7-5.8 and 

autoclaved under 134 °C with a pressure of 2.1 bar for 40 minutes. 

 

 

 

 

3.3.3.2 Composition and Concentration of Different Nitrogen Sources in Modified 
B5 (Gamborg et al., 1968) Basal Medium 
 
 
3.3.3.2.1 Modified B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  2.5000 g/l
(NH4) 2SO4 0.1340 g/l
Casein hydrolysate 0.2500 g/l
  
  
 
 
 
3.3.3.2.2 Ammonium Based Modified B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  0.0000 g/l
(NH4) 2SO4 3.4293  g/l
Casein hydrolysate 0.0000 g/l
  
  
 

The missing K and S are compensated through the addition of K2(SO4) 
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3.3.3.2.3 Casein Hydrolysate Based Modified B5 (Gamborg et al., 1968) Basal 
Medium 
 
KNO3  0.0000 g/l
(NH4) 2SO4 0.0000 g/l
Casein hydrolysate 3.6610 g/l
  
  
 
The missing K and S are compensated through the addition of K2(SO4) 

 
 
 
3.3.3.2.4 Nitrate Based Modified B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  3.3743 g/l
(NH4) 2SO4 0.0000 g/l
Casein hydrolysate 0.0000 g/l
  
  
 
The missing K and S are compensated through the addition of K2(SO4) 

 
 
 
 
 
3.3.3.3 Composition and Concentration of Different Nitrogen Sources in B5 
(Gamborg et al., 1968) Basal Medium 
 
 
3.3.3.3.1 B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  2.5000 g/l
(NH4) 2SO4 0.1340 g/l 
Casein hydrolysate 0.0000 g/l
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3.3.3.3.2 Ammonium Based B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  0.0000 g/l
(NH4) 2SO4 3.4293 g/l
Casein hydrolysate 0.0000 g/l
  
  
 
The missing K and S are compensated through the addition of K2(SO4) 

 
 
 
 
3.3.3.3.3 Casein Hydrolysate Based B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  0.0000 g/l
(NH4) 2SO4 0.0000 g/l
Casein hydrolysate 3.6610 g/l
  
  
 
The missing K and S are compensated through the addition of K2(SO4) 

 
 
 
 
3.3.3.3.4 Nitrate Based B5 (Gamborg et al., 1968) Basal Medium 
 
KNO3  3.3743 g/l
(NH4) 2SO4 0.0000 g/l
Casein hydrolysate 0.0000 g/l
  
  
 
The missing K and S are compensated through the addition of K2(SO4) 
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3.3.3.4 Vitality Test (Staining with Neutral Red) 
 

 

This method can be used to show the vitality of the cells in the petiole and in cell 

suspensions. Neutral red stains the vacuole of the cells. If the vacuoles are stained red, it 

means that the cells are living, otherwise if the cells are dead they do not absorb the neutral 

red and remain transparent. 

 

The solution of neutral red has been made with a concentration of 0.002-0.01 % (W/V) by 

dissolving 2 mg of neutral red in 100-1000 ml Aqua dest. It is very important that the pH 

of the medium containing neutral red is between 6.8 -8.0. The pH can also be adjusted by 

using NaOH or HCl when distilled water or liquid solution is not used. The plant material 

is incubated for 30 - 60 minutes in the neutral red solution. The incubation time can be 

prolonged to even 3 hours or shortened to 15 minutes. The plant material is washed later 

with some 100 ml liquid solution for the microscopic examination. 

 

 

 

3.3.3.5 Determination of Dry and Fresh Weight of Plant Material 
 
 
Before measuring the fresh weight of the plant material, it is placed on a piece of filter 

paper. Then the fresh weight is determined by using a digital balance. For the 

determination of the dry weight, the plant material was air-dried.  

 

 

 

3.3.3.6 Counting Cells in Callus, Petiole and Suspension Culture 

 

A maceration solution of chromic acid and HCl in 1:1 ratio (10 % chromic acid : 0.1 N 

HCl) has been made. 10 ml of maceration solution is added to 1 g fresh weight of callus, 
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cells of the suspension or petiole. The plant material mixed with the maceration solution is 

kept for 24-48 hours at room temperature (Neumann, 1995). 

After the maceration solution has dissolved the pectin between the cells, and when the 

cells are completely separated from each other, then one ml of the mixture is taken and at 

least 0.1 ml of the mixture is dropped on each field sight on the hemacytometer and 

counted 6-10 times. An average is taken from the counts and substituted in the following 

formula: 

 

 

N = X ( M V  +  F G  ) : VK n 
 
 
Where:  

  

N Number of cells 

X Mean of number of cells 

MV Volume of the maceration solution being used in µ l 

FG Fresh weight in mg 

VK Volume of the chamber in µ l (0.1 ml or 100 µ l) 

n Number of the examined glasses or tubes etc. 

  

 

 

 

3.3.3.7 Determination of the Osmotic Potential 
 

 

3.3.3.8 Preparation of the Plant Material (Extraction of Cell Sap) 
 

Using a surgical syringe, the cell sap has been extracted from single cells. 50 µl of the cell 

sap is used to measure the osmotic pressure with the help of Digital Mikro-Osmometer 

Type 11 from Roebling Messtechnik Co. 
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3.3.3.9 Determination of pH Value of Different Basal Media and the Culture 
Solution 
 

 

Before the measurement of the pH, the culture is filtered through a blue band filter, and 

then the pH of the culture solution is measured with the help of a digital pH meter.  

 

 

 

 

3.3.3.10 Determination of pK Value of Different Basal Media  

 

 

10 ml of the basal medium is added to a 100 ml glass beaker. 60 ml distilled water is added 

to it, plus 5 ml of HCl 2 mol/l. Then the pH is measured constantly while adding 100 µl of 

NaOH 2 mol/l. The pH change is measured till the solution reaches the pH of 12. 

 

 

 

3.3.3.11 Determination of Chlorophyll and Anthocyanin in Plant Material 
 

 

 

1 % solution of HCl in 96 % ethanol in a graduated Erlenmeyer flask has been prepared.  

After determining the fresh weight of the plant material, 10 ml of a solution consisting of 1 

% HCl/ethanol (W/W) is added to 1 g of the plant/cell material kept over night at 4° C in 

absolute darkness. The liquid phase is separated from the solid phase by means of blue 

band filter. The extinction of Anthocyanin and chlorophyll is measured using a digital 

spectral photometer. The peak of the absorption spectrum is 647,664 and 750 nm for 

chlorophyll, 500 and 512 nm for Anthocyanin. 
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3.3.4 Nitrogen Form and its Relation to the Enzyme Nitrate Reductase 

 
 
 
 
 
3.3.4.1 Extraction of Total Soluble Protein (After Bender et al., 1978) 
 
 
Extraction Buffer (After Bender et al., 1978) 
 
Tris HCl pH 7.5 0.15  M
Na-EDTA 0.01  M
KCl 0.01  M
MgCl2 X 6 H2O 0.001 M
DTE (fresh) 0.01  M 
Saccharose 0.05  M
Na-Ascorbat 0.04  M 
  
  
 

 

 

1 ml of the extraction buffer is added to 0.100 g of insoluble PVP in a mortar, covered 

with parafilm and kept over night in the refrigerator (4°C). 

Using a Buchner funnel, the plant material is washed with double distilled water. 1 g of 

plant material is crushed with a pestle along with 3 ml of extraction-buffer and sea sand, 

then centrifuged for 30 minutes at 12000-14000 rpm. The supernatant solution is collected 

and the residue discarded. The amount of the supernatant solution is measured for further 

calculations. The extracted soluble protein is precipitated with ammonium sulfate and 

immediately used for the detection of the enzyme activity, whereas for the measurement of 

the protein content the sample was stored in a refrigerator at -80°C. 

 

 
 



 47

3.3.4.1.1 Purification of Protein Using Ammonium Sulfate 

 

682 mg ammonium sulfate are weighed in a microfuge tube and 1 ml of the protein extract 

is added. After gentle shaking dipped in liquid nitrogen, the supernatant solution is 

discarded by inclining the microfuge tube. 2 ml of the extraction solution are added to the 

sample and recentrifuged under 4°C at 13000 rpm for 15 minutes. The supernatant 

solution is discarded. 1 ml of the extraction buffer is added to the microfuge tube and 

shaken gently till the protein is completely dissolved in the solution. 

 
 
 
3.3.4.2 Detection of Constitutive and Inductive Nitrate Reductase (NR) 
 

 

Nitrate is reduced by reduced nicotinamid-adenine dinucleotid phosphate (NADPH) to 

nitrite in the presence of the enzyme nitrate reductase (NR). 

 

Nitrate + NADPH + H+ --- NR ---> nitrite + NADP+ + H2O 

 

The amount of NADPH oxidized during the reaction is stoichimetric to the amount of 

nitrate. The decrease in NADPH is measured by means of its light absorbance at 340 nm. 

For the determination of both, the inductive and the constitutive NR activity, in a cuvette, 

0.5 mg NADPH, 1.850 ml double dist water, 100 µl KNO3 in a concentration of 10 ppm is 

added to 1 ml of the imidazole buffer (pH 7.8) and stirred well. Then after 3 minutes the 

absorption extinction is measured (DE1) at 340 nm. 200 µl extraction solution is added 

and stirred well. The absorption extinction is measured every minute against the blank for 

120 minutes (DE2). The temperature during the experiment is kept at 25 °C. 

The activity of NR exhibits a daily rhythm, peaking at the light phase (Lopes et al., 1997, 

Hunter J. J. and Ruffner, H. P. 1997). The activity of NR, at posttranscriptional level is 

regulated by light and photosynthesis and is one of the mechanisms responsible for the 

short-term coupling between photosynthesis and leaf nitrate reduction in the light (Lejay et 

al., 1997). Additionally the levels of NR activity are affected by nitrate nutrition and plastid 
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integrity (Cabello et al., 1998). The activity of both forms of NR follows circadian rule, 

based on either an endogenous (internal) rhythm, behaving as if it is driven by a biological 

clock, this behavior is said to be free-running, continuing in a regular cycle even in the 

absence of N or an exogenous (external) timer (Singh, 1995). To distinguish between the 

activity of constitutive and inductive (present only in KNO3 treatment) NR enzyme, 

considering nitrogen source of the culture medium and the diurnal rhythms of enzyme 

NR, additionally the extraction of the sample protein from cell culture has been conducted 

for the determination of constitutive NR enzyme between 12-14 PM and for inductive NR 

enzyme 22-24 PM. 

 

 
3.3.4.3 Determination of Intensity of the Enzyme Nitrate Reductase 
 
V Enzyme activity (U/ml) 
DE Extinction difference (DE1 - DE2) 
Ve Volume of the enzyme  used in µl 
Vt Total volume (3.05 ml) 
e 6.3 mmol-1 X cm-1 = 6300 µ mol-1 X cm-1 
t Extinction time difference in minutes 
d Light path in cm 
  
 

 

Enzyme activity (U/ml) = V = DE .Vt . 1000 :  e . d . Ve . t 
 

 V= [ DE * (3.05) * 1000 ] / [ (6300) * (1) * (0.1) * (1) ] 

 

 
 
3.3.4.4 Determination of Optimum pH of the Enzyme Nitrate Reductase 
 

The optimum pH of the enzyme NR is determined by changing the pH of substrate 

solution right before measuring the absorption extinction in the DE1 phase. The pH 

values used to find out the optimum pH of the enzyme NR were 5.5, 6.0, 6.5, 7.0 and 7.5. 
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3.3.4.5 Determination of Km Value of the Enzyme Nitrate Reductase 

 

 

To determine the Km value of the enzyme NR, which is a constant that reflects the affinity 

of an enzyme for its substrate or that is, the strength by which the enzyme binds to its 

substrate, different concentrations of KNO3, namely, 1, 10, 20, 40, 50, 80, 160, 320 and 

1000 ppm is added to the reaction, then the enzyme activity is measured. 

 

 

 

 

3.3.4.6 Determination of Protein Content (After Bradford, 1978) 
 
 
 
 
Tris Buffer (pH 8,5)  
  
Tris 50 mM 
EDTA 1   mM 
DTT (Dithiothreitiol) 5   mM 
  
  
 
 
 
 
 
Bradford Reagent 
 
Comassie Blue G-250 0,01 % 
Ethanol 4,7   % 
H3PO4 8,5   % 
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Protein Standard 

 

 

Protein Calibration Standard (BSA) is mixed with Tris Buffer to a total volume of 100 µl. 5 

ml of the Bradford solution is added to it and after 5 minutes the absorption spectrum of 

the protein is measured at the wavelength of 595 nm.  The amount of the protein is 

calculated in µg per gram plant material. 
 

 

 

3.3.4.7 Calculation of Protein Content of Cells 
 

 

To 100 µl of the extracted soluble protein of the plant cells 5 ml of the Bradford reagent is 

added. After 5 minutes the absorption spectrum of the protein is measured at the 

wavelength of 595 nm. The amount of the protein is calculated in µg per gram FW plant 

material.  

 
 
 
3.3.5 Histological Examination 

 

 

The carrot petioles are harvested at room temperature, fixed by immersing in a mixture of 

ethanol : glacial acetic acid, so the inorganic matter is extracted, then imbedded in a 

paraffin block. The paraffin block is cut with a wedge shape microtom blade (NO. C 

sliding microtom OmE, Fa. Reichert). The thickness of the cut sections were 10-15 µm. 

Depending on the size of the sections, 15 to 30 sections are placed on a 40°C pre-warmed 

metal plate and kept overnight on a metal plate with a temperature of 30°C. Because the 

formation of the meristematic cells is characterized by an increase in protein synthesis 

intensity in the cytoplasm, the transections are dyed with hematoxylin (modified after 

Heidenhain and Gerlach, 1977) 
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A Leitz light microscope is used to examine the specimen and Agfapan ASA 25 for the 

documentation. 

 

 

 

3.3.5.1 Procedure for Preparation of Petiole Transection and Staining for 
Histological Examination 

 

 

 

The petioles are washed with 90 ml basal medium and about 50 ml distilled water, and 

placed in small glass or plastic bottles for fixation.  

 

 

 

 

 

Fixing Processes for Histological Studies 

 

 

- Glacial acetic acid 100 % + Ethanol 96 % (1:3) 2- 48 hours                                  

- Ethanol 70 % for at least 4 hours                                                                              

- Dehydration solution H2O + Ethanol 96 % + Tert. Butanol  (15:50:35) 2 hours 

- Ethanol 96 % + Tert. Butanol (45:55) 2 hours                                         

- Isopropanol 100 % + Tert. Butanol (25:75) 2 hours                                       

- Tert. Butanol overnight or 12 hours                                                                         

- Tert. Butanol + liquid Paraffin  (1:1) at 60°C, until there is no smell, 12-24 hours. 

- Orienting the object in paraffin block 24 hours                                                         

- Fixing of paraffin blocks on wooden blocks 24 hours                                              

- Trimming of the paraffin (0.5 cm * 0.5 cm) 

- Washing the slide glasses with diluted chrome sulfuric acid or with 40 % ethanol 

- Washing the slide glass with tap or distilled water 
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- Cleaning the slide glasses with a good quality clean cloth to avoid cloth fiber sticking on 

the slide glass surface 

- Dipping the slide glasses in gelatin solution (gelatin 5.0 g + chromalaun 0.5 g + 1000 ml 

water) 

- Drying the slide glasses on a hot plate or in the air or under suction chamber 

- Adjusting the cutting thickness on the Reicherd-Microtom to 10 micron at an angel of 7 

degrees. 

- Placing 3 bands each consisting of 12-15 cuts on the slide glass.  

- The microtom knife is cleaned from time to time with xylol 

- Placing the slide glass on a hot plate at 40° C to spread shrunken cells 4 hours 

- Placing the slide glass on a hot plate at 30° C for evaporation of the water 12 hours 

- Placing the slide glasses in a holder, then in a cuvette 

- Bathing the slide glasses in xylol for 5 min 

Ethanol 96 % for 5 min, ethanol 70 % for 5 min                    

Ethanol 50 % for 5 min, distilled water for 5 min                     

Fe-Alaun-Beize (3 %) for 12 hours 

Flowing water for 10 minutes 

Haematoxylol for 24 hours 

Flowing water for 10 min 

Ethanol 50 % for 5 min 

Ethanol 70 % 5 min 

Ethanol 96 % 5 min 

Xylol 5 min. 

 

Placing the slide glasses on a piece of blotting paper or toilet paper to dry, then with the 

help of a glass rod adding 3 drops of Malinol on the slide glass and cover it or use liquid 

cover slip. After about a week, the slide glasses are in the position to be kept for an 

unlimited period of time. 
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3.3.6 Observing Protein Spectrum and Pattern of Protein Synthesis in Carrot Petiole 
Transection (14C-Leucine Labelled) During Induction Phase 
3.3.6.1 Culture Condition for Labelling Petioles with 14C-LEUCINE  
 

Petioles were cultured in tubes containing modified Gamborg basal medium with 0.5 ppm 

2, 4-D. After different incubation times (5 hours,7 and 14 days) under sterile conditions, 

the petioles are harvested and labelled with 14C-Leucine.  

 

 

3.3.6.2 Labelling of Petiole with 14C-LEUCINE 

 

Under sterile conditions the petioles are washed with 90 ml Gamborg basal medium 

without casein hydrolysate (casein hydrolysate contains 52.9 µg L- Leucine / mg), then for 

the purpose of adaptation incubated further with 15 ml in a 50 ml Erlenmeyer flask in 

Gamborg basal medium without casein hydrolysate on a rotary shaker for 2 hours.  

5 µ Ci L - [ U 14C ] Leucine (» 100 µ lit) with a specific activity of 282 µ Ci / µ Mol is added 

to the incubation medium and shaken for 3 hours on a rotary shaker. Finally, the plant 

material is sieved and washed first with 50 ml of distilled water, then with 120 ml of 12C 

L-Leucine solution (0.15 mol). The collected wash fraction is used for the detection of the 

absorption of the radioactive material from the plant material. 

For the autoradigraphic examination of the petioles, they are incubated and fixed in 

ethanol : glacial acetic acid at 21°C, then embedded in paraffin blocks 

 

 

3.3.6.3 Procedure for Preparation of Labelled Petiole Transection for Histological 
Examination 
 

- Taking the petioles out of the tube and washing the petioles three times with 90 ml B5+ 

(without casein hydrolysate) in laminar airflow. 

- Transferring the content of Erlenmeyer flask over a sieve to filter the liquid media out. 

- Sub culturing the petioles in 15 ml B5+ (without casein hydrolysate) by putting the plant 

material in a 50 ml Erlenmeyer flask and shaking it for a period of 2 hours 
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- Measuring the fresh weight of the petioles 

- Adding 14C-Leucine to media. There must be 2 different concentrations of 14C-Leucine 

for a better contrast. These concentrations are 1 and 5 micro Curie 20 and 100 µl 

respectively (0.1 micro Curie per 1 ml of the liquid media). 

- Shaking the Erlenmeyer flask for 3 hours 

- Transferring the content of the Erlenmeyer flask over a sieve to filter the liquid media out 

and washing the petioles while on the sieve with about 50 ml distilled water, 120 ml 0.15 

molar 12C-Leucine and 40 ml distilled water. Then transferring the petioles to a scintillation 

tube. 

 
 
 
3.3.6.4 Fixing Processes for Histological Studies 

 

Same as 3.3.5.1 

 

 

3.3.6.5 Storage of NTB2 Emulsion (Fa.Technomara, Kodak NTB 2, Mean Grain 

Diameter 0,26 µm) 
If frozen or kept at room temperature, this results in a deterioration of the emulsion and 

fog formation or loss of the ability to coat the slides. After coating, the slides can be stored 

in a refrigerator at 4-13°C. 

 

 

 

3.3.6.6 Emulsion Handling and Slide Preparation 

 

 

The liquid emulsion is actually in solid form and must be liquefied under safelight 

conditions (use a Kodak safelight filter NO. 2 with a 25 watt bulb at 4 feet distance from 

the emulsion). 
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- Removing the emulsion bottle under the safelight conditions from the box and placing it 

in a water bath of 43°-45°C. Liquidification takes place in about 45-60 min. 

- Gentle movement of the bottle speeds the process, but too much agitation leads to the 

formation of microscopic bubbles. It is recommended or approved to add nothing to the 

emulsion, otherwise there is the possibility of fog formation on the slides. 

 

The emulsion layer thickness and uniformity depend on: 

a - Temperature of emulsion and the slides. 

b – Speed rate of withdrawal of the slides from emulsion to form a uniform layer. 

c - Whether the slide is allowed to drain in a vertical position or immediately placed 

horizontally 

d - Whether the emulsion has been diluted. 

 

The researcher must adjust the parameter to suite his specific requirement for thickness 

and the uniformity of the emulsion. 

- Under safelight conditions using a Kodak safelight filter NO. 2 with a 25 Watt bulb at 4 

feet distance from the emulsion, dip the slide glasses very gently in the emulsion. The slides 

are kept 30-60 minutes in a horizontal position to dry. 

 

 

3.3.6.7 Exposure Consideration 
 

- Keeping the prepared slides in a light-tight box in a refrigerator with a drying agent at a 

temperature of 5-10° C during the exposure period. Low temperature and high humidity 

decrease latent image fading and effect chemical reaction between the specimen and the 

emulsion. The exposure time must be determined empirically. 

- After the exposure period is over, allow the box reach room temp for 2-3 hours, then 

unseal it. This is to prevent moisture condensation on the surface of the cold slides. 

Exposure period depends on the intensity of the radioactivity used, and if the emulsion is 

diluted or not. In this way, petioles labelled with 1 µCi of the L - [U 14C] Leucine need an 

exposure period of 7-9 days, whereas with water diluted emulsion (1:1) they require 14 

days. 
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3.3.6.8 Exposure Period (Days) in Relation to Intensity of Radioactivity and 
Dilution  

 

Intensity NTB2 (pure) NTB2 + Aqua dest. (1:1) 
 (Days) (Days) 
   

1    µCi 2 - 3 7 - 9 

2,5  µCi 1 - 1.5 2 - 3 

5    µCi 0.5 - 1 1 - 1.5 

   

 
 
 
3.3.6.9 Processing Instructions 
 
For Kodak autoradiography solutions, use a temperature of 15° C. 

Under safelight conditions (use a Kodak safelight filter NO. 2 with a 25 watt bulb at 4 feet 

distance from the emulsion) 

- Develop the slides with Kodak Dektol developer (1:1) for 2 min. 

- Dip the slides in stop bath filled with distilled water (do not use acid) for 10 sec. 

- Fix the slides with Kodak fixer for 5 min. 

- Wash the slides with distilled water for 5 min. 

- Let the slides dry in dust free atmosphere for 2-4 hours.      

 

 

3.3.6.10 Determination of Absorption Rate of 14C-Leucine  

 

1 ml of the collected fraction obtained through washing the labelled plant material is added 

to 10 ml of scintillation cocktail (Emulsiva 199TK, Fa. Packard) and the amount of isotope 

present in the nutrient solution is measured with the help of a liquid scintillation counter 

(Packard TRI - Carb 300 C / 460 C). 
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Petioles absorbed only some amount of the applied isotope (L-[U 14C] Leucine). Absorbed 

amount of isotope by the plant is calculated considering the amount of the isotope present 

in the collected fraction obtained through washing. 

 

 

 

 

Days in Culture Absorption of L-[U 14C] Leucine in % 

  

t0 7.00    % 

t7  (B5, + 2,4-D) 36.20  % 

t14 ( B5, + 2,4-D) 42.63  % 

t19 ( B5, + 2,4-D) 53.30  % 

t19 (B5, - 2,4-D) 42.50  % 

t21 (B5, + 2,4-D) 69.43  % 

t21 (B5, - 2,4-D) 49.50  % 

  

  

 

 

 

3.3.7 Investigations Related to Protein Spectrum and Pattern of Protein Synthesis in 
Cultured Petiole of Carrot Using 2-Dimensional Gel Electrophoresis (2-DE, Grieb, 
1992) 
 

 

3.3.7.1 Labelling of Petiole with 14C-Leucine 

 

Under sterile conditions after 7 and 14 days the petioles are washed with 90 ml Gamborg 

basal medium without casein hydrolysate (casein hydrolysate contains 52.9 µg L- Leucine 

/mg), then for the purpose of adaptation incubated further in a 50 ml Erlenmeyer flask 

with 15 ml Gamborg basal medium without casein hydrolysate on a rotary shaker for 2 
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hours. In the same manner the control “t0” is adapted for the further examination to all 

treatments. 25 µ Ci L-[U 14C] Leucine (» 100 µl) with a specific activity of 282 µ Ci / µ 

Mol is added to the incubation medium and shaken for 2 hours on a rotary shaker. Finally 

the plant material is sieved and washed, first with 100 ml of distilled water, then with 240 

ml of 12C-Leucine solution (0.15 mol), and finally with 90 ml distilled water. The collected 

wash fraction is used for the indirect detection of difference of absorption rate of the 

radioactive isotope from the plant material. On the basis of the fresh weight of the 

petioles, a defined amount of acetone hexane mixture is applied. Detection of the 

absorbed isotope is performed using wash fraction of acetone hexane mixture. 

 

 

 
3.3.7.2 Determination of Absorption Rate of 14C-Leucine  

 

1 ml of the collected fraction obtained through washing of the labelled plant material is 

added to 10 ml of scintillation cocktail (Emulsiva 199TK, Fa. Packard) and the amount of 

isotope present in the solution is measured with the help of a liquid scintillation counter 

(Packard TRI-Carb 300 C / 460 C). 

 

 

 

3.3.7.3 Sample Preparation for 2-DE 
 
3.3.7.4 Protein Extraction using Acetone Powder 
 
15 ml of Acetone-Hexane mixture with the following composition: 10 mM Tris/HCl (pH 

8.5), 77 mM Glycin, 0.2 mM EDTA, 15 mM DTT, 9 M urea, 2 % Triton X-100 (w/v), 2 % 

Ampholyte at a temperature of -18°C is added to 1 g of plant material and homogenized 

for 1 min using a commercial homogenizer with a rotation velocity of 30,000 RPM. The 

homogenate is placed on blue ribbon filter paper, pressed using a glass rod, then washed 

frequently with ice-cold Acetone-Hexane mixture. For the complete evaporation of the 

organic solvent, this mixture is kept over night in an incubation chamber at a temperature 
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of 30°C. This mixture can be kept for further processing in a desicator. Using this method, 

not only are the soluble proteins extracted, but also some of the membrane bound proteins 

(SCOPES 1982). 

 

 

 

3.3.7.5 Calculation of Protein Content (after Bradford, 1976) 
 

To 100 µl of the extracted soluble protein of the cells 5 ml of the Bradford reagent is 

added. After 5 minutes the absorption spectrum of the protein is measured at the 

wavelength of 595 nm. The amount of the protein is calculated in µg per gram FW plant 

material. BSA is used as protein calibration standard. 

 

 

 

3.3.7.6   2-Dimensional Gel Electrophoresis (2-DE) by Grieb 
 
 
2-DE performed according to O´Farell (1975) and modified for the tissue culture by 

GARTENBACH-SCHARRER (1988). 

 
 
3.3.7.7 First Dimension (Isoelectric Focusing (pI)) 
 
 
3.3.7.7.1 IEF (pI) Run 
 
 
Round gel is used as described by GARTENBACH-SCHARRER (1988) with a height of 

120 mm and a diameter of 4 mm. Havana electrophoresis with 2 % concentration of the 

ampholyte and the ampholyte pH range of 3-10 (1.2 %) and 4-6 (0.8 %). 
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100-250 µg protein is applied to the gel, which corresponds to a specific absorption of 
14C-Leucine ca. 25 x 104 dpm / gel rod. IEF (pI) in itself is performed at a temperature of 

18°C for 17 hours and a constant current of 300 Volt, finally, for obtaining a clear band 

contrast, for 1 hour with a constant current of 500 Volt. Measurement of the gradient is 

done by the elution method using 20 mM KCl, 3 parallel for each 3 gels. For the second 

dimension, the gel is equilibrated with SDS buffer 3 times each time for 30 minutes.  

 
 
 
 
3.3.7.8 Second Dimension (SDS-PAGE) and Staining with CBB R-250 
 
 
3.3.7.8.1 SDS-PAGE Run 
 

 

After LAEMMLI (1970), a flat gel 18 cm long and 1.5 mm thick is used. The method is 

described by GARTENBACH-SCHARRER (1988). 

 

SDS-electrophoresis is performed at a temperature of 15°C for 7 hours and a constant 

current of 400 mA. LMW-Calibration Kit (MG 14-94 kd) is used as molecular marker. 

The gel is fixed for 2 hours on a rotary shaker and stained with Coomassie Brilliant Blue-R 

250 for 45 minutes, finally, it is distained with the help of rapid distainer for 1 hour, 

photographed and kept in 7% acetic acid before the fluorography. 

 
 
 
3.3.7.9 Fluorography 
 
The gel is gently shaken 3 times, each time for 30 minute, in a solution of dimethylsulfoxid 

(DMSO), later for 3 hours in PPO/DMSO (BONNER and LASKEY 1974). By washing 

the gel 1 hour PPO will be removed from the gel and the gel can be dried in a gel dryer for 
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7 hours at 60°C. The fluorography film (KODAK X-OMAT AR) is brought into direct 

contact with the gel and exposed for 7 days at -80°C. The exposed film is developed 

according to the producer’s instructions (KODAK).  
 

Stained and labelled protein spots can then be examined qualitatively. CBB stained spots 

show the protein pattern and the fluorograph shows the pattern of the protein synthesis. 

From both procedures, protein spots obtained are overlapped on one another, specifying 

the spot either stained with CBB or labelled with radioisotope, and the spots are stained 

and labelled and a number allocated to each of them. 

 

 

 

 

3.3.7.9.1 Procedure for Calculation of MW of Protein Spots on 2-DE 
 
 
The MW of the protein spots is determined using marker proteins as the orientation point. 

Polynomial regression of the 3rd grade ( Y = a + bx + cx2 + dx3 ) is the applied statistical 

method for this purpose with a coefficient of correlation  r = 0.999 996. 

Calculation of MW of the protein spots and comparison of the spots at different stages of 

induction are conducted by a self-written computer application program on Borland Turbo 

Basic interpreter. 

 

3.3.7.9.2 Marker Proteins  

  

Marker Protein MW in Dalton 
  

Rabbit Muscle 94 000 

BSA 67 000 

Ovalbumine 43 000 

Bovine Erythrocyte 30 000 

Bovine Alpha-Lactalbumin 20 100 
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3.3.7.9.2.1 Multiple Standard Error of Estimate 
 

 

For marker proteins, the multiple standard error of estimate is calculated using the 

following formula: 

 

Standard Error of Estimate = Y2 / (n – 1) 

 

Where: 

Y2 = Sum of square of residues  

n = Number of independent variables 

 

  

  

Marker Protein MW Deviation in Dalton 
(residue) 

  

Rabbit Muscle ±  57 

BSA ± 139 

Ovalbumin ± 121 

Bovine Erythrocyte ±  54 

Bovine Alpha-Lactalbumin ±  21 

 
 
3.3.8 Global Protein Analysis Information Resource Search Database ExPASy 
Server 
 

 

Subtractive analysis was performed on the basis of comparative variation of protein spots 

at t0, t7 and t14 using TagIdent SWISSP-ROT Identification Database, on the EXPASY 

server http://www.expasy.ch/ (app. M, released Dec. 1995, 360 000 proteins) 
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considering pI, MW, standard error of estimate and residues of the marker proteins for 

each protein spot as follow. 

 

Range of MW of each protein spot = (standard error of estimate + residue of the nearest 

marker protein) / 2 

 

The homologue proteins in the database of the server are selected according to their MW, 

pI values and their function. 
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4 RESULTS 
 
 
 
 
 

4.1 Somatic Embryogenesis in Carrot Petiole Explants 
 

 

 

 As a preliminary, a system was established giving the opportunity to observe the 

physical induction site of somatic embryogenesis to follow the protein formation in 

different plant cells using a common, well-established procedure. 

 

 

To achieve this objective, the petiole explants of the carrot has been used, for in 

one instance many experiments have been conducted since the first reports of somatic 

embryogenesis with this plant. As a model plant, it gives the possibility of using the 

experience of the past and allows a greater degree of comparison. The reason for selecting 

petiole as the explants source was to see the physiological changes in different cell types 

for a better understanding of the induction process, coupled with the examination to find 

out the possible changes in the synthesis of the proteins (app. A, Fig 1; app. D). 

 

 

As regards the role of nitrogen as a keystone for the protein structure and 

synthesis, during the realization stage mostly cell suspension culture has been used. Our 

efforts were concentrated on the cell fractions observed by histological examination, which 

during the whole process of somatic embryogenesis, from induction till formation of the 

plantlets, were presumed to be embryogenic competent cells.  
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4.1.1 Investigations Related to Role and Effect of Different Nitrogen Forms 
During the Induction and Realization Phase of Somatic Embryogenesis in Carrot 
Petiole Culture   

 
 

One cm long petioles were cultured in a modified B5 auxin-containing medium to 

observe the role of different nitrogen treatments during induction and realization of 

somatic embryogenesis in carrot. Eight different media were prepared containing one or a 

mixture of the following nitrogen forms added to the basal medium, namely: 

 

 

Casein Hydrolysate =  32.5 ppm N
(NH4)2SO4 =  28.4 ppm N
KNO3 = 415.6 ppm N
  

  

  

I Casein Hydrolysate + (NH4)2SO4 + KNO3 
II Devoid of any Nitrogen Source 
III (NH4)2SO4 + KNO3 
IV KNO3 
V (NH4)2SO4 
VI Casein Hydrolysate 
VII KNO3 + Casein Hydrolysate 
VIII (NH4)2SO4 + Casein Hydrolysate 
 

 

 

After transfer to an auxin-free medium, macroscopic examination was conducted 6, 16, 22, 

29, 37, 47, 52 and 84 days after the culture, examining splitting of petioles, number of cells 

in the suspension and formation of embryonic bodies e.g., globular, heart, torpedo and 

formation of plantlets, pH of culture media (app. H, table 1). 
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In these series of experiments it was shown that the performance of somatic 

embryogenesis varies using different nitrogen forms as follows: 

 

 

 

I- Casein Hydrolysate + (NH4)2SO4 + KNO3 
 

 

Petiole culture with all three different nitrogen sources showed moderate growth. 

Six days after the culture, globular stage emerged, pH of the medium remained 5.6. Twenty 

days after the sub-culture in auxin-free media plantlets were visible. The number of 

globular stages produced using three types of nitrogen was the highest at the end of the 

culture compared to the other treatments (app. H, table 1). 

 

 

 

II- Devoid of any Nitrogen Source 
 

Without any source of nitrogen petioles literally starved. There was no sign of 

growth and development. Petioles were beige at the beginning and their color became very 

pale 16 days after the culture, on the 22nd day of culture it became beige-brown and were 

practically dead. The pH of the medium falls to 3.96 twenty-two days after the culture, and 

due to the mechanical friction a few cells could be seen in the culture solution without any 

sign of growth (app. H, table 1). 

 

 

 

III- (NH4)2SO4 + KNO3  
 

This treatment was similar to treatment number one (I), with a slight sign of 

advancement in the realization stage, so that 13 days after sub-culture torpedoes could be 

seen macroscopically, which lead to the formation of plantlets (app. H, table 1). 
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IV- K NO3 

 

When nitrate as the oxidized form of nitrogen is used as the sole nitrogen form, 

pH of the media increased from the initial value of 5.7 to as high as 6.26. Petioles split six 

days after sub-culture in an auxin-free medium. At first the globular stage appeared, 

followed by the heart stage on the 13th day of culture and ultimately 21 days after the 

culture small plantlets were formed. Sixty-eight days after the sub-culture, an average of 72 

plants were formed per tube using merely nitrate as the source of nitrogen. It was observed 

that nitrate increases the pH of the culture. A similar trend was observed using different 

nitrogen concentrations in cell suspension culture (app. H, table 1).  

 

 

 

V- (NH4)2SO4  

 

Using only (NH4)2SO4, the reduced form of nitrogen caused a drastic decrease in 

culture pH, so that 6 days after the sub-culture the pH of the milieu reached a low value of 

3.94. Petioles showed a very pale color. The pH of the solution reached a minimum of 3.72 

sixty six days after sub-culture. This treatment was nearly similar to the treatment where no 

nitrogen was supplied to the solution. The reason behind the restriction in growth and 

development of the petiole culture can be the drastic reduction of pH affecting the 

function of metabolically important enzymes (app. H, table 1). 

 

 

 

VI- Casein Hydrolysate 

 

Casein hydrolysate acts as a buffer system stabilizing the pH of the medium. Petioles split 

profoundly and went through all embryonal stages, but development ceased at the late 

torpedo stage. Petioles showed pale green color, which later turned to yellow. On the basis 

of these observations, casein hydrolysate stimulates cell division at the cost of 

differentiation (app. H, table 1; app. K, fig. 4). 
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VII- KNO3 and Casein Hydrolysate : 
 

 

Using a mixture of oxidized and organic form of nitrogen leads to an increase of 

splitting with the highest number of plants per tube. The pH of the solution reached 6.27. 

The amount of 32.5 ppm casein hydrolysate added to the media could hardly buffer the 

system and neutralized the pH increase induced by the application of 415.6 ppm KNO3 

(app. H, table 1).  

 

 

 

VIII- (NH4)2SO4 and Casein Hydrolysate : 
 

 

In this system, the concentration of casein hydrolysate was not enough to buffer 

the system. The presence of ammonium reduced the pH to 4.31 six days after sub-culture. 

This value remained nearly the same till 66 days after sub-culture. In this treatment, no 

embryonal bodies were observed during the induction period, and there was no splitting of 

the petioles (app. H, table 1). 

 

To summarize the role of different nitrogen forms in B5 for petiole culture during the 

realization phase, it can be stated that ammonia reduces the pH of the solution and nitrate 

increases the pH.  Caseine hydrolysate has a buffer effect on the solution in higher 

concentrations. It can, however, cause stabilization of the pH even at lower 

concentrations. Casein hydrolysate can induces dormancy, which stops development of the 

embryonal bodies at the late torpedo stage. With an oxidized form of nitrogen, such as 

KNO3 petioles went through all embryonic stages during the realization phase, which were 

more advanced in time and ultimately produced plants. In these experiments nitrogen was 

supplied at the various nitrogen concentrations as in B5. To elucidate the influence of 

these various nitrogen forms on embryo development during the realization phase the 

complete B5 nitrogen concentration for each form was applied separately to cell 

suspensions previously induced to somatic embryogenesis in a complete B5 medium. 
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4.1.2 Investigations Related to Role and Effect of Different Nitrogen Forms 
During the Realization Phase of Somatic Embryogenesis in Carrot Cell Suspension 
Culture 

 

For studying the role of different nitrogen forms, three auxin-free culture solutions 

were prepared which were merely supplied either with casein hydrolysate or (NH4)2SO4 or 

KNO3 as the sole source of nitrogen at identical nitrogen concentrations (app. H, table 2, 

3). 

Observations concerning the realization of somatic embryogenesis using different nitrogen 

forms showed: 

Using 476 ppm casein hydrolysate led to intensive cell division, but differentiation 

of the dividing cells slowed down. The cell culture went through different embryonic 

stages, namely, globular heart and torpedo. The realization stops, however, at late torpedo 

stage (app. L, fig. 1,2,3). The concentration of casein hydrolysate did not play a role in its 

specific mode of realization of carrot somatic embryogenesis. In the casein hydrolysate 

treatment, globular stage appeared 6-8 days, heart 12-14 days and torpedo 16-18 days after 

the sub-culture in auxin-free medium. 

 

By using 476 ppm (NH4)2SO4 somatic embryogenesis was not realized. This 

phenomenon was probably as a result of a pH change induced by the application of 

ammonium. Reducing the concentration of ammonium in this system, however led to 

realization of somatic embryogenesis so that treatments using concentrations of 0.1, 0.2, 

0.4, 1.0 and 2.0 mM ammonium sulfate prove this hypothesis. Cell cultures supplemented 

with such low amounts of ammonium nitrogen went through different embryonal stages. 

The pH of the solution remained between 4.9 and 5.0, but did not fall below 4.0 as when 

greater concentrations of ammonium were used. In all the treatments using low 

concentrations of ammonium nitrogen, somatic embryogenesis terminated at the torpedo 

stage (app. H, table 6). 

By using KNO3, as an oxidised nitrogen form, during the realization phase as the 

sole source of nitrogen, contrary to the hypothesis stating that “somatic embryogenesis 

necessarily needs a reduced form of nitrogen” (Halperin et al., 1965; Kamada et al., 1979, 

1984b;Wetherell et al., 1976), globular stage was formed already 5-6 days after the culture, 
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10-12 days thereafter heart structures appeared. Torpedoes emerged 13-16 days thereafter 

leading to the formation of plantlets 15-18 days from beginning of the sub-culture in 

auxin-free medium. To verify this phenomenon, different parallel experiments were 

conducted using modified and original Gamborg B5 media differing in their nitrogen form 

and using different cell material. The independent experiments were conducted in our 

institute, in which the same results were obtained (app. H, table 1, 10a-10d). 

Studying the role of nitrogen is connected to the chemical changes, which that very 

specific nitrogen form exposes to the culture. A very important feature of the selected 

nitrogen form used is its effect on the pH of the culture medium. To find out this 

characteristic, it is advisable to determine the buffering capacity of each nitrogen form in 

the culture solution (app. H, table 7). Starting with the ammonium sulfate as the reduced 

form of nitrogen, it is well known that the potential of the redox processes, in which H+ 

ions participate in the reaction are pH dependent. When the pH value increases the redox-

potential decrease. 

NH4+ <==> NH3- + H+/e- (oxidation form) 

NO3- ---> NO3- + [8H+/8e-] --> NH3 + OH- 

Thus, due to the release of protons in diammonium sulfate treatment the pH of the 

culture medium is reduced, and because of the release of OH- in KNO3 treatment the pH 

of the medium increases. In the case of casein hydrolysate, it could be seen that the casein 

hydrolysate acts as a buffer. 

As a definition, the buffering capacity of a solution is dependent on the relation between 

the pH and pK of the system. A solution is considered as having a good buffering capacity 

if this difference is within a range of 1 on the pH scale. It has been observed that the 

buffering capacity of the diammonium sulfate and potassium nitrate lay within a range of 2. 

Casein hydrolysate, but showed a narrow difference between its pH and pK values. It is 

indeed a suitable buffer, and as will be discussed later, it stabilizes the pH of the culture 

significantly. A mixture of three different nitrogen forms in the solution had a pH capacity 

between the organic and non-organic nitrogen containing solution. So the solution makes 

use of different features of each nitrogen forms (app. H, table 1, 3, 7, 8, 9). Diammonium 

sulfate reduces the pH of the solution, potassium nitrate exerts an opposite effect by 

increasing the pH, and finally casein hydrolysate acts as a buffer to stabilize the pH of the 

system. 
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Experiments with petiole culture (B5-) under different pH conditions showed that in the 

induction phase the pH of the solution had a maximum fluctuation of 1 pH range 12 days 

after the culture. In general the pH tended to reach a value around 6 (app. H, table, 3, 8). 

After subculture in an auxin-free medium, the pH value decreased for the next two weeks. 

This can be a result of the release of H+ (protons) in exchange for readily available and 

absorbable cations like Ca and K. and N H4+ After 14 days, however, the pH of the culture 

solution rose, so that 30 days after sub-culture in an auxin-free medium the pH of the 

nutrient solution tended again to reach 6 on the pH scale. The pH difference between the 

lowest adjusted pH of 4.5 and the highest adjusted pH of 7.2 at this time was about 0.5 on 

the pH scale. This difference became less as the culture proceeded, so that 43 days after 

the sub-culture it was 0.45 on the pH scale. Considering the realization of somatic 

embryogenesis on the basis of the occurrence time and the number of embryonal bodies, 

cultures with higher adjusted pH values showed a better performance (app. H, table 8, 9). 

In one treatment, petioles were incubated in stock solutions with an initial pH of 4.5, 5.0, 

5.8, 6.5 and 7.2. Petioles with a pH of 4.5 failed to produce any embryo. Petioles cultured 

in stock solution with a pH of 5.0 showed a restricted embryogenesis. Other treatments 

with higer pH went through all stages of realization of somatic embryogenesis and 

produced small plants (app. H, table 8; app. J). 

To distinguish pH influence on induction of somatic embryogenesis during the realization, 

the same experiment was conducted using induced cell suspension in modified B5 as the 

source material with pH variations of 4.5, 5.0, 5.8, 6.5 and 7.2 (app. H, table 8). The 

measured pH of the culture solution after 28 days ranged betwen 6.8 and 7. The increase in 

the pH of the solution was 1 pH scale more than that of the petiole culture, however, 

showing the same trend. Cell suspension adjusts its pH after transfer in an auxin-free 

solution. Regarding the realization of somatic embryogenesis, different treatments behaved 

in the same way as in the petiole culture. Treatment with low solution pH failed to give rise 

to advanced stages of embryogenesis. Somatic embryogenesis in treatments with a pH of 

between 5.8 and 6.5 led to a better development. This is evident because the optimum pH 

of most of the enzymes is in this pH range. 

To determine the role of pH and its relation to the kind of nitrogen, three stock solutions 

with initial pH ranges of 4.2, 5.8 and 7.2 were prepared. With a pH of 4.2 there were no 

sign of realization of somatic embryogenesis regardless of the type of nitrogen. With a pH 
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of 5.8 and 7.2 casein hydrolysate and KNO3 treatment showed normal embryo 

development. The development was better under the pH of 5.8, indicating that an 

optimum pH for somatic embryogenesis is around 6. As for (NH4)2 SO4, however, it 

showed slight improvement  under pH of 7.2 suggesting a relation between pH and the 

occurrence and degree of realization during carrot somatic embryogenesis. So that, first, a 

pH readjustment can be forced on the system when the pH reducing nature of 

diammonium sulfate encounters the adjusted pH of 7.2. Secondly, under higher pH ranges 

plant cells can more readily use the nitrogen of diammonium sulfate for its vital metabolic 

activities e.g. growth and development (app. H, table 8, 9). 

A parallel experiment conducted with different pH ranges of 5.8, 6.8, 7.2 and 8.0 showed a 

similar trend, indicating an optimum pH of 5.8 - 6.8 as a general rule (app. H, table 10a-d). 

The optimum pH range of control B5 medium lies between 5.8 and 6.8. Casein hydrolysate 

treatment follows the same trend. In (NH4)2SO4 treatment, only under a high pH of 8, the 

cells divided more rapidly as compared to culture with lower pH. The vitality of cells was 

determined by using neutral red. The cells were vital even under a pH of 4.2. Nitrate 

treatment showed a retardation trend as the pH reached the scale of 8.0. 

Concerning the pH of the suspension solution, as a general rule, diammonium sulfate 

lowers the pH of the solution to 3.5, nitrate by contrast increases it up to around 7.0, and 

casein hydrolysate keeps the pH of the solution nearly constant, around 6.0. Treatments 

with low concentration of (NH4)2SO4 led to embryo formation. This can be interpreted as 

follows: decreasing the concentration of the supplied amount of (NH4)2SO4, pH is less 

effective. 

Different nitrogen nutrition does not only have an effect on the realization of somatic 

embryogenesis and pH, but also on the chlorophyll content, Anthocyanin production, 

fresh weight, soluble protein content and osmotic pressure of the cell sap (app. H, table 2, 

4, 10a-10d). Taking the fresh weight of the plants into consideration, the treatment using 

casein hydrolysate showed the maximum fresh weight even if the source material was 

petiole or cell suspension, and cell division and growth were more when compared to the 

other treatments. 

Diammonium treatment decreases the pH to a critical level at which physiological and 

biochemical processes stagnate. Fresh weight of potassium nitrate was less than that of 

casein hydrolysate treatment, but on the other hand, realization of somatic embryogenesis 
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in this treatment was better. The control treatment with all three different types of nitrogen 

ranked between casein hydrolysate and potassium nitrate treatment. This is regardless of 

the number of embryonal bodies e.g. number of young plants. The casein hydrolysate 

treatment produced the highest number of embryonal bodies, the formation of plantlets, 

however, failed in this treatment. This phenomenon is of importance in itself. The existing 

hypothesis proclaiming that all torpedoes will be transferred to plantlets comes under 

question. 

The total chlorophyll content of KNO3 treatment was the highest, followed by the control 

and casein hydrolysate treatment (app. H, table 2, 4). The (NH4)2SO4 treatment produced a 

very low amount of chlorophyll because as a result of low pH, enzyme activities were 

reduced and the growth of the cells was affected extremely negative. An interesting point, 

however, is the ratio of chlorophyll a to chlorophyll b in photosystem II, in which 

molecules of chlorophyll a are arranged with a different geometry, so that shorter 

wavelength, higher energy photons are absorbed than in the ancestral photosystem I. 

Chlorophyll a is the main photosynthetic pigment and is the only pigment that can act 

directly to convert light energy to chemical energy. However, chlorophyll b, acting as an 

accessory or second light-absorbing pigment, complements and adds to the light 

absorption of the primary pigment, chlorophyll a. Chlorophyll b has an absorption 

spectrum shifted towards the green wavelength. Therefore, chlorophyll b can absorb 

photons, which chlorophyll a cannot (Mengel, 1991;Raven and Johnson, 1999). In the 

control treatment, it was a 2:1 ratio, which became considerably different in casein 

hydrolysate and KNO3 treatment in which this ratio changes in favour of chlorophyll b 

when the concentration of KNO3 decreases (app. H, table 2, 4). 

This effect was not merely a matter of the form of nitrogen nutrition, but also the 

concentration of nitrogen in the treatment solution (app. H, table 4; app. K, fig. 4). The 

ratio of chlorophyll a to chlorophyll b reaches the normal ratio of 2:1 as in the control 

treatment, with an increase in the KNO3 concentration in the treatment solution. 

This level already reached a ratio of 1:1 when 276 ppm KNO3 was supplied to the 

solution. A reverse trend was observed in casein hydrolysate treatment in which the ratio 

of chlorophyll a:b became 1:1.9 (app. H, table 4). In the KNO3 treatment the ratio of fresh 

weight to dry weight was greater than that of the casein hydrolysate treatment; this ratio, 

however, was the greatest in the control treatment. Anthocyanin production differs too, 
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according to the form and intensity of the nitrogen nutrition. Anthocyanin production in 

KNO3 treatment, for example, showed a 20-fold increase as compared to the casein 

hydrolysate treatment, the production of anthcyanin increased with the increase of 

nitrogen supplied to the solution. 

 

The difference in the osmotic pressure of the cell sap showed that KNO3 treatment had 

the highest osmotic pressure, followed by casein hydrolysate treatment and control (app. 

H, table 2). Measuring osmotic pressure of the liquid solution showed that solution media 

of KNO3 treatment had the lowest osmotic pressure, followed by casein hydrolysate and 

standard treatment. Since osmotic pressure results from the concentration of molecules in 

the solution, it can be stated that the nitrogen form alters the osmotic pressure of the plant 

cell and of the media. 

The soluble protein content of different nitrogen treatments showed that the highest rate 

of protein was produced when casein hydrolysate was supplied to the system, followed by 

modified B5 having all three types of nitrogen (app. H, table 2; app. I). The lowest values 

were determined in the KNO3 treatment. These results did not show the same trend 

regarding dry weight proportions. It can be presumed that the protein content in the casein 

hydrolysate treatment is high, but the non-soluble protein substances are less as compared 

to KNO3 treatment, which has less protein content but a higher dry weight percentage. 

During the realization phase, the activity of the inductive form of the enzyme NR was 

highest when KNO3 was the only source of nitrogen, followed by the control and casein 

hydrolysate treatment. Measurement of the constitutive enzyme NR showed an extremely 

small difference between different treatments (app. I). 

 

 

4.2 Histological Examination 

 

 Histological examination of the petiole transection shows transformation of 

vacuolised cells into cytoplasm rich and division active meristemic cells (app. A). The use 

of Hematoxylin as the dyeing agent gave the opportunity to localize the cells and the 

pattern of protein synthesis during the induction phase (app. A, fig. 2, 4, 6). In the same 

manner, but with more precision, the application of a radio isotope e.g. in this context the 
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use of radio active leucine gave valuable indication not only about the location of the cells 

which later formed rhizogenic and embryogenic centers stimulated through auxin 

application, but also about the quantitative accumulation of leucine containing proteins in 

different cells and structures within specific culture periods (app. A, fig. 7, 8, 10, 11). 

 

 

 

4.2.1 Histological Observations During the Induction Phase of Somatic 
Embryogenesis (culture in B5 with 2,4-D) 

 

 

The petiole section of a 6-to-8 weeks old carrot plant is a heart-shaped structure 

and shows 5 collenchyma supporting structures adjacent to the periphery of the epidermis 

(app. A, fig. 1). Under the cuticle is a single-lined epidermis cell layer, under which is a 

small, vacuolized 2-to-3-lined sub-epidermal layer of vacuolized cells. The proportion of 

the nucleus to the whole cell is greater than that of ground and epidermal cells (Schäfer et 

al., 1985). The ground tissue by itself is composed of highly vacuolized cells varying in size. 

There are three or more collateral vascular bundles. The largest vascular bundle lies in the 

center, having xylem in the center and phloem tissues on the periphery. Glandular 

channels as a typical structure for plants belonging to Apiaceae are located between the 

conducting channels of vascular bundle and epidermis. There are three glandular channels 

in this phase of growth. Glandular channels are schizogen, secreting glands. 

 

B5+ cultured carrot petiole explants show the following histological changes: 

As little as 4 days after incubation of the petioles in an auxin-containing medium, one or 

more meristematic centers are formed on the periphery of the vascular bundle (app. A, fig. 

2). Individual cells of these meristems distinguish themselves from adjacent cells of the 

ground tissue in form, size and stainability with Hematoxylin. Regarding the form, these 

cells are round in shape and have a better-defined geometrical form. They are smaller in 

size and possess more cytoplasm with an obvious larger nucleus. 

This process remains a mere microscopic event even after 6 days of petiole culture, but 

after 8 days of culture, splitting of the petioles can be seen macroscopically. The formation 
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of rhizogenic centers can be better observed in culture condition with less concentration of 

auxin. Further growth of the rhizogenic meristems finally leads to the rupture of the 

epidermis and some times adventitious roots appear (app. K) if the petioles are kept for 

more than 18 days in an auxin-containing medium.  

Under the epidermis, but with a lapse of 5 days, almost the same developmental pattern 

can be observed. As early as 10 days after incubation of the petioles in an auxin-containing 

culture, some originally vacuolised sub-epidermal cells accumulate more cytoplasm and 

start to divide and form meristematic centers called embryogenic centers, resembling 

rhizogenic centers, but with smaller, more round and more compact cells (app. K, fig. B, 

C). These structures remain under the epidermis and with in the course of time rupture the 

epidermis. Some sub-epidermal cytoplasm rich cells show a specific developmental mode 

in which the cytoplasm of a single cell divides up first into 2, then into 4 cells and more, 

and in this way forms the pre-embryos (app. A, fig. 5). 

The idea behind using a radioactive isotope was to show the differentiation and the 

changes relating to possible changes in the pattern of protein synthesis of cultivated carrot 

explants during the induction phase of somatic embryogenesis. So that for a specific 

change e.g. different culture times, some specific protein spectrum or some specific pattern 

for the protein synthesis related to that particular culture time and the developmental stage 

could be detected. The chosen time intervals for petiole culture were after 5 hours, 

denoted as 0, after 7, 14, 19 and 21 days, denoted as t0, t7, t14, t19 and t21 respectively 

(app. A fig. 1-6). 

Histological observations strongly suggest that the protein content of the plant cell in an 

auxin-containing medium increases 7 days after culture (t7) as compared to t0 (app. A, fig. 

1, 2). In the next 7 days in t14 this trend continues (app. A, fig. 6).  

On the basis of the histological observations and the determination of the absorption the 

rate of 14C-leucine, one can postulate that the accumulation of 14C-leucine and its 

incorporation in the protein synthesis during the induction phase increases. In these series 

of observations, it was evident too, that the embryogenic centers in all the observation 

periods, namely t7, t14, t19 and t21, were labelled (app A, fig. 7, 8, 9, 10, 11). The 

rhizogenic centers, by contrast showed a selective absorption pattern, so that it can be 

postulated that the protein synthesis in embryogenic centers is more intensive than in the 

rhizogenic centers (app. A, fig, 8, 9, 10, 11). 



 77

A short comparison between rhizogenic and embryogenic meristems follows: 

 

Development of Rhizogenic Centers: 
 

Time of appearance = around 7 days 

Location = near vascular bundles 

Cell form = rather long 

Cell size = small 

Stainability with Hematoxylin = all structures are dyed 

Absorption of radioactive leucine = some meristems are labelled and others not 

 

Development of Sub-Epidermal Cytoplasm Rich Cells and Embryogenic Centers: 
 

Time of appearance = 10-12 days 

Location = sub-epidermal cell layers between epidermis and vascular bundles 

Cell form = rather round 

Cell size = small 

Stainability with Hematoxylin = all structures are dyed 

Absorption of radioactive leucine = all meristems are labelled 

 
 
4.2.2 Histological Observations During the Realization Phase of Somatic 
Embryogenesis (culture in B5 with out 2,4-D) 

 

After the petioles were 14 days in an auxin-containing medium, they were sub-cultured in a 

medium without an exogenous auxin. Using a very high concentration of auxin for the 

induction, however, is usually inhibitory to development of the somatic embryos in 

advanced stages. In the hormone-free medium, development of globular staged somatic 

embryos followed; heart, torpedo stage and finally plantlets were formed. 

Thus induction of carrot somatic embryogenesis requires a single hormone signal to induce 

a bipolar structure (app. J, fig, 3) capable of forming a complete plant upon transfer to a 

hormone-free medium. 
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4.3 Protein Spectrum and Pattern of Protein Synthesis in Cultured Petiole of 
Carrot Using 2-Dimensional Gel Electrophoresis (2-DE, Adapted and extended 
from Grieb, 1992)  
 

 

During the in-vitro culture of the petiole explants some changes in the tissue 

morphology and physiology were observed, so that more meristemic cells were formed 

followed by an increase in dry weight. The protein content of a 7-days-old (t7) petiole 

culture in an auxin-containing medium became three times more than the petioles that 

were only 5 hours in the culture (t0). Increase in the protein content of petioles that were 

14 days in the induction medium was marginal, compared with the protein content of 

petioles that were 7 days in the culture. Comparable to this process was the 14C-leucine 

accumulation, with the result that the accumulation of 14C-leucine increased from t0 to t7, 

but decreased at t14 (app. B, table 1). The simultaneous increase in protein content and the 
14C-leucine accumulation, from t0 to t7, is an indication of an intensive synthesis of 

proteins. A decrease in 14C-leucine accumulation from t7 to t14 can be due to the fact that 

either in this specific time proteins with less leucine are produced, or leucine is lost from 

the system through respiration in the form of CO2 (Dadhkahi 1978). It can be presumed 

that through using acetone powder, all the soluble proteins were extracted, but it is not 

clear if all, or some of the membrane-bound proteins were eventually extracted too. 

Keeping this in mind it can be presumed that the relation of soluble protein to the entire 

amount of synthesized protein from t7 to t14 has been changed, so that 14 days after the 

culture more 14C-leucine was accumulated or incorporated in the membrane bound 

proteins (app. B, table 1). Experiments conducted by Neumann and Pauler (1969) and 

Pauler et al. (1977) with Daucus culture under the influence of kinetin suggest the tendency 

of the protein synthesis towards synthesis of non-soluble proteins in meristematic cells. 

The effect on the protein content of petiole culture and 14C-leucine accumulation is similar 

to the histological observation (app. B, table 1, 2). 

 

There are changes in the meristemic cells in the vicinity of the vascular bundles in t7, 

followed by an increase in the number of cells, accompanied with a more intensive protein 

synthesis (app. A, fig. 8). In a later stage of the culture the number of these meristems 
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increased, followed by the emergence of the first cytoplasm-rich embryogenic cells and 

centers (app. A, fig. 10). 

 

A possible reason why this differentiation pattern cannot be localized clearly, considering 

protein content or 14C-Leucine accumulation, can be either that the number of 

embryogenic cells is much smaller compared to the total number of cells, so that the 

protein synthesis of these cells is covered up by overlapping of cells, or the proteins 

required for the induction of somatic embryogenesis possibly exist already in a 7-days-old 

culture. The protein synthesized till this very stage possibly builds the prerequisite for the 

induction of somatic embryoghenesis. In a 2-DE, the emergence and absence of proteins 

should show which proteins are merely synthesized and which disappear, or which 

proteins are common comparing t0, t7 and t14. Furthermore, the changes occur till the 

end of induction of somatic embryogenesis in the petiole system (app. E). 

 

 

 

 

 

 

4.3.1 Pattern of Protein Synthesis (Adapted and extended from Grieb, 1992) 
 

A total number of 282 protein spots were identified using 2-DE and flurography. From the 

appeared spots, 211 were stained with Coomassie Brilliant Blue R-250 (CBB) and 241 

spots were labelled (app. B, table 2). These protein spots can be categorized in three 

groups (app. C; app. E): 

 

I- Protein spots, which were merely stained with CBB indicating proteins, were not newly 

synthesized at the time of investigation. These represent that part of the protein spectrum, 

which is present in that very particular differentiation stage. 

II- Protein spots which were only detected by means of flurography. These proteins were 

newly synthesized at the time of investigation, so that they may correspond to a particular 
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differentiation stage. (They were not present before, or the CBB was not sensitive enough 

to show the existence of these spots.) 

 

III- Protein spots which were both stained and labelled. These are proteins representative 

of a particular differentiation stage and their continuous synthesis could be vital for the 

maintenance of that very particular differentiation stage. 

 

 

At the t0 stage, i.e. after 5 hours of culture only 91 proteins could be detected. This 

number becomes 2.7 fold by t7, when the petioles are 7 days in the induction medium. The 

number of spots of this stage amounts to 250. From this stage till t14, when petioles are 14 

days in culture, there is a slight increase in the number of protein spots, namely to 256 

spots. 

 New synthesis of proteins or proteins, which are representative for a particular 

stage resembles the total protein spectrum. It increases from t0 with 67 (13+54) proteins to 

99 (6+93) proteins in t7. From t7 to t14 the synthesis of proteins, which appear during a 

specific period of differentiation and relate to a specific differentiation event decreases to 

85 (17+68) protein spots (app. C). Protein spots stained only with CBB showed a 

continuous increasing trend. They increased from 12 proteins in t0 to 35 in t7, and later to 

54 in t14. Considering the quantitative aspect of the protein spectrum, it provides the 

evidence confirming an increase of 14C-leucine incorporation rate detected by scintillation 

counter measurement during the induction period from t0 to t7, and the decrease in 
14C-leucine incorporation from t7 to t14 (app. B, table 1).  

Parallel to the histoautoradiographic studies (4.2), the soluble proteins of 2-DE of 

comparable treatments (Grieb, 1992) were identified. The identification of 52 homologue 

proteins and a summary of the possible function of the proteins in this investigation will be 

discussed.    

 

Protein content, the number of protein spots and 14C-leucine accumulation 

increased from t0 towards t7. 14C-leucine accumulation and the number of labelled protein 

spots decreased from t7 to t14 (app. B, table 1, 2). The only increase later was an increase 

in total protein content and a marginal increase in total protein spots. 
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Observations showed the protein spots amounted to 91 spots 5 hours after the culture (t0), 

13 % of which were merely stained with CBB. This means a part of these spots constitute 

proteins originally belonging to the petiole and its system, and the application of auxin did 

not play any role in their synthesis. These proteins appeared in t7 and t14 too. After 5 

hours of culture, only 54 new proteins were synthesized (59 %), of which 9 spots were 

specific for this very stage. They did not emerge in t7 or t14 and so can be called t0 specific 

proteins. 44 proteins belonging to this induction stage were synthesized in other stages too. 

71 protein spots in this stage emerged in t7 and t14, so they can be called household or 

house-keeping proteins, or proteins which play a role in the basic metabolism of the 

petiole or plant (app. B, table 2; app. C). To describe t0 protein spots: This stage had 13 

protein spots belonging to this specific stage of induction, of which 9 protein spots were 

newly synthesized. 

 

 The protein spots that appeared 7 days after the culture amounted to a total of 250. 

Of this number, 122 (49 %) were specific for this differentiation period; they were both 

stained and labelled. 79 spots were present in this stage but absent in t0. 43 spots were 

identical with the spots in t0. 93 protein spots (37 %) were merely labelled, of which 65 

spots were specific to this differentiation period/stage. 35 spots (14 %) were merely 

stained with CBB, meaning they were not newly synthesized at the time of observation. 

 

 256 protein spots were detected at 14 day of culture. There was not a highly 

significant difference between the protein spectrum on the whole and the rate of protein 

synthesis between the 7th and 14th day of culture, but there are differences in other 

respects. The number of stained spots at t7 increased from 14 % to 21 % in t14 (from 35 

to 54 spots). The number of spots stained and labelled increased from 50 % to 53 % (135 

spots). The number of spots merely labelled decreased from 37 % in t7 to 27 % in t14. 

Of 54 spots, 6 spots were common with t0 and 43 with t7. The largest groups of protein 

spots (135) were spots, which were both stained and labelled; 4 spots appeared for the first 

time, 82 spots were present in t7 and 49 were present in t0 too. 68 protein spots in this 

stage were merely labelled, and of this batch 14 and 56 spots were merely labelled in t0 and 

t7 (app. C). It can be presumed that these proteins have either very low rates of synthesis 
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or that they emerge with a specific time sequence. Seventeen spots are t14 specific spots, 

of which 9 spots were stained, 4 labelled and 4 stained and labelled. 

For a greater understanding of the possible function of the protein spots, considering 

stainabilty and ability to assimilate 14C-leucine in the structure, a classification system can 

be implemented. This classification is based on the nature and the time of appearance of 

the protein spots. 

 

There are 9 groups and sub-groups (see 5.2.1; Grieb,et al 1997; app. G): 

  

 A characteristic protein pattern is associated with the various stages of the cultural cycle 

investigated, (Grieb, 1992). After 5 hours of cultivation, proteins of the groups 1 - 5 and of group 9 could 

be detected, at t7 the proteins of groups 2, 3 and 5 – 7, and at tl4 proteins of groups 3, 5, 6, 8, and 9 

occur simultaneously. Obviously, these changes in the protein complement should be part of an evolving 

program of molecular differentiation, as the basis of the histological events described earlier. Apparently, 

changes in differentiation of the petiole explants during the cultural cycle of 14 days involve a stepwise 

activation and termination of genetic subprograms. First, a subprogram for the petiole is terminated (group 

1), which seems to be representative for the original tissue. At the same time, a subprogram obviously 

associated with explantsation and the inoculation procedure is activated (group 4) and terminated before t7. 

Another subprogram, however, which is active already in the petiole also continues during culture (group 3). 

Proteins of this subprogram should have some “house-keeping” function for the carrot petiole per se. Also 

the proteins of group 2 are already synthesized in the petioles, but at t7 of culture their concentration is 

reduced (only labelled), and at t14 they are no longer detectable. Additionally, a subprogram represented by 

44 proteins is initiated at t0 (group 5), which continues throughout the cultural cycle. Apparently, these 

proteins are characteristic of cultured petiole explants. Associated with the formation of the rhizogenic 

centers near the vascular bundles (t7), proteins of some other subprograms are synthesized (groups 6 and 7). 

However, a large group of these proteins (166) is also present at t14 (group 6). Nevertheless, the 8 proteins 

of group 7 could only be detected at t7 and should be specific for this physiological state. This indicates that 

within the differentiation program in the cultured petiole, subprograms are switched on and off at defined 

stages in the cultural cycle. It remains to be seen which function each individual subprogram serves for the 

continuous progress of the differentiation program of the petiole as a whole. Although the extracts used for 2 

D-electrophoresis contain proteins from all cells of the petiole explants, as historadioautograms indicate e.g. 

at t7 most of the label is concentrated in and near adjacent vascular bundles, and to a lesser degree in the 
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epidermis area. Most of the proteins labelled should have been synthesized in these morphogenic parts of the 

cultured explants. 

 

 

Only rather small changes in the protein pattern can be observed at t14, as compared to t7, which 

coincides with the appearance of the cytoplasm-rich sub-epidermal cells with embryogenic initiation, and of 

embryogenic centers. At t14, proteins of group 8 are absent, at t7 are only stainable, and should have been 

synthesized in the period between 7 and 14 days of the cultural cycle (spot No. 13, 74, 76, 97, 106, 

142, 144, 145, 146; app. E). Others, however, are traceable by the stain and the label, and therefore the 

synthesis of these should have been initiated between t7 and t14 and should continue at t14 (4 proteins: 

spot No. 85, 87, 88, 130; app. E). Eventually, 4 proteins of this group are only labelled at this stage 

(spot NO. 117, 118, 119, 192; app. E). It remains to be seen whether and/or to what extent these 

proteins at t14 are specifically related to somatic embryogenesis. 

 

 

 

 

4.4 Global Protein Analysis Information Resource Search Database ExPASy Server 
 

 

Subtractive analysis performed on the basis of comparative variation of protein spots of t0, 

t7 and t14 using TagIdent SWISS-PROT Identification Database, on the EXPASY 

server http://www.expasy.ch/tools/#proteome-TagIdent (app. M; released Dec. 

1995, 360 000 proteins). The homologue proteins in the database of the server are selected 

according to their MW and pI values, and their function considering multiple standard 

error of estimate within and in between the marker proteins for each protein spot (app. E, 

F). 

The soluble proteins of the treatments of 2-DE (Grieb, 1992) were identified. The 

identities of 52 homologue proteins are listed bellow and the possible function of the 

proteins in this investigation will be discussed. 
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4.4.1  An example for the calculation procedure of MW of four protein spots on 2-
DE 
 
 
a) Calculation of MW of the marker proteins based on their RF values and the RF 
value of BPB ( RF = b / a ). 

Mw of 
Marker  

Spot 
(b) 

BPB 
(a) 

RF 
(b/a) 

Calculated 
value for MW

Residue Residue2 

KD mm mm  KD KD KD 
       

94 13.0 189.1 0.0687 93.942456 0.057544 0.00331131
67 28.3 189.1 0.1496 67.139901 -0.139901 0.01957229
43 52.8 189.1 0.2792 42.878934 0.121066 0.01465698
30 98.8 189.1 0.5224 30.054551 -0.054551 0.00297581

20,1 152.8 189.1 0.8080 20.078305 0.021695 0.00047067
       
     Σ Residues2 0.0409870

6 
     Standard Error 

of Estimate 
0.11688607

 

 

B) Calculation of MW of four selected protein spots based on their RF values, the 
RF value of the BPB, using polynomal regression of the 3rd grade. 
 

Parameters of the polynomal regression of the 3rd grade 

a0 126.240701 
a1 -543.108643 
a2 1135.5212 
a3 -1010.28454 
 

Calculation of RF value and MW of four selected protein spots  
 
 

Protein 
Spot 

Spot 
(b) 

BPB 
(a) 

RF 
Value 

Calculated 
value for MW 

Number mm mm  Dalton 
8 27.5 189.1 0.1454257 68.29676236 
44 39.5 189.1 0.20888419 53.68713517 
80 56.0 189.1 0.29613961 40.99395678 
136 70.5 189.1 0.37281861 34.87356958 
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4.4.2 List of Homologue Protein Spots Synthesized During the Induction Phase of 
Somatic Embryogenesis in Carrot Petiole Culture using Protein Identification 
Database Swiss-Prot 
 
 
 
Spot Protein EC Number t0 t7 t14 
2 PHENYLALANINE AMMONIA-

LYASE 
EC 4.3.1.5    

8 α-GLUCOSIDASE 
α-AMYLASE FAMILY baker`s yeast 
P53341 

EC 3.2.1.20    

13 IDENTICAL TO E2 
GLYCOPROTEINS 

    

22 PYRUVATE DECARBOXYLASE 
ALPHA-CARBOXYLASE 
PYRUVIC DECARBOXYLASE 
ALPHA-KETOACID CARBOXYLASE 

EC 4.1.1.1    

23 CYTOCHROM D UBIQUINOL 
OXIDASE SUB UNIT I 

EC 1.10.3.-    

24 CYTOCHROM P450 EC 1.14.14.1    
26 SIMILARITY TO 

DEHYDROPYRIMIDINASE FAMILY 
    

30 β-FRUCHTOFURANOSIDASE / 
INVERTASE / INVERTASE   INV3-
DAUCA glycosyl hydrolysis 
Q39693 

EC 3.2.1.26    

42 NADH DEHYDROGENASE 
(UBIQUINONE) 
UBIQUINONE REDUCTASE 
TYPE I DEHYDROGENASE 
present in mitochondria, can be degraded 
to form EC 1.6.99.3  
NADH DEHYDROGENASE 
CYTOCHROM C REDUCTASE 

EC 1.6.5.3 
 
 
 
 
EC 1.6.99.3 

   

43 CYTOCHROM-C OXIDASE EC 1.9.3.1    
44 α-AMYLASE EC 3.2.1.1    
45 PYRUVATE KINASE EC 2.7.1.40    
46 RUBISCO 

P25826 Alluaudia procera chloroplast 
Q42903 Lopezia riesenbachia chloroplast 

EC 4.1.1.39    

47 RUBISCO 
P48690 Castania sativa chloroplast 
P00874 Zea mays chloroplast 

EC 4.1.1.39    

55 RUBISCO EC 4.1.1.39    
71 LONG-CHAIN ACYL-COA 

DEHYDROGENASE 
EC 1.3.99.13    

CBB stained   14C-leucin labelled    CBB stained and 14C-leucin labeled
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Spot Protein EC Number t0 t7 t14 
77 CELL DIVISION PROTEIN     
79 ACETYL-COA C-

ACETYLTRANSFERASE 
ACETYL-COA THIOLASE 

EC 2.3.1.9    

80 ALCOHOL DEHYDROGENASE EC 1.1.1.1    
85 PUTATIVE HYDROGENASE 

EXPRESSION/FORMATION 
PROTEIN 
Q58400 
 

    

86 TOBACCO A-TYPE CYCLIN 
cell-cycle regulated transcription 
of A- & B-type plant cycline genes 
O04399 

    

89 LYSOPHOSPHOLIPASE EC 3.1.1.5    
90 Glycerol-3-PHOSPHATE 

DEHYDROGENASE 
Q27634 

EC 1.1.1.8    

97 DOMAIN-LEUCINE ZIPPER 
TRANSCRIPTION FACTOR 
P54841 

    

109 ADP-HEPTOSE SYNTHASE 
Q48046 

    

124 GLYOXAL OXIDASE (FRAGMENT) 
Q01845 

    

128 PHYTOENE SYNTHASE EC 2.5.1.-    
130 PHOSPHOFRUCTOKINASE EC 2.7.1.11    
132 ACETALDEHYDE 

DEHYDROGENASE  P97091 
    

133 PHYTOENE SYNTHASE EC 2.5.1.-    
134 CARROT DNA BINDING PROTEIN  

transcriptional regulator DCKUROD 
Q43428 
 

    

136 DNA-BINDING PROTEIN 
(HOMEOBOX GENES) 
Q43426 somatic embryos (Komamine) 

    

137 GERANYL TRANSFERASE 
FARNESYL-DIPHOSPHATE 
SYNTHASE 
terpenoid and sterol biosynthese 

EC 2.5.1.10    

138 FRUCTOKINASE EC 2.7.1.4    
143 PUTATIVE GLUCAN ENDO-1,3-

BETA-GLUCOSIDASE GVI 
PRECURSOR 
starch and sucrose metabolism 

EC 3.2.1.39    
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Spot Protein EC Number t0 t7 t14 
146 GLUCAN ENDO-1,3-BETA-

GLUCOSIDASE PRECURSOR 
P79062 

    

148 ORNITHINE CYCLODIAMINASE EC 4.3.1.12    
151 METHIONINE AMINOPEPTIDASE EC 3.4.11.18    
154 50 S RIBOSOMAL PROTEIN 

(Mitochondria) 
P91353 

    

160 GUANINE NUCLEOTIDE 
REGULATORY PROTEIN (fragment) 

    

162 HYPOTHETICAL PROTEIN (involved 
in the biosynthesis of polysaccharides) 

    

186 CYTOCHROM -C OXIDASE EC 1.9.3.1    
190 HYPOTHETICAL PROTEIN 

Q57662  related to energy production, cell 
division, metabolism, transcription, 
translation and replication 

    

192 METHYL COENZYM M REDUCTASE 
GAMMA SUBUNIT terminal step 
methanogenese, in anaerobic degradation 
of biomass 
PYRROLINE-5-CARBOXYLATE 
REDUCTASE 
terminal step in prolin biosynthesis 

EC 1.8.-.- 
 
 
EC 1.5.1.2 

   

199 CYTOCHROM -C OXIDASE 
mitochondrial inner membrane protein 
P27168 

EC 1.9.3.1    

222 PUTATIVE GLUTAMATE RACEMASE EC 5.1.1.3    
230 PROTEIN TYROSIN PHOSPHATASE 

(FRAGMENT) 
    

232 CYTOCHROM B (FRAGMENT)     
237 ATP-BINDING TRANSPORT 

PROTEIN 
Q56005 

    

245 NADH DEHYDROGENASE F 
(FRAGMENT) 

EC 1.6.5.3    

267 RNA-BINDING PROTEIN 
Q44555 
NADH DEHYDROGENASE F 
(FRAGMENT) 
Q33305 

    

276 RNA-BINDING PROTEIN Q44555     
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4.4.3 Control Mechanisms During Somatic Embryogenesis 
 
 
 
 
 Analyses of the protein population of 2-DE demonstrated differences in the gene 

expression of carrot petiole explants during different culture periods. Using the global 

protein analysis information resource search program in a database, we were able to 

identify homologues of 52 protein spots from the total number of 281 spots synthesized 

during the entire induction period of carrot petiole explants during t0, t7 and t14. Given 

the fact that our orientation point was the MW and the pI of the spots on the 2-DE, 

without sequencing of the 281 spots, some fundamental criteria for the identification of 

these spots had to be established. One of the first criteria was to search for the proteins in 

the database matching the molecular weight and pI of the spots from our 2-DE experi-

ment, considering the ± deviation from the multiple standard error of estimate of spot and 

residue of the nearest marker protein. Another criterion was trying to find homologue 

spots from carrot 2-DE reported by other researchers. Furthermore, we had to choose the 

spots that could be relevant to our experiment, considering the biochemical pathways 

using the on-line service of Boehringer Mannheim and as far as possible trying to establish 

a connection between different spots. Attention was drawn in the first instance to the 

spots, which were merely labelled at t7 and t14 or only at t14, as the possible candidates for 

the proteins, which play a cardinal role in the induction of somatic embryogenesis. 

 

 

 As the first homologue, spot No. 136 can be mentioned, which is only labelled at 

t7 and t14 but absent at t0. This pattern suggests that the synthesis of the spot can be part 

of the induction program. The homologue of this spot has been reported by Komamine, 

registered as carrot DNA-binding protein as a transcriptional regulator, homeobox gene 

(Trembl: Q43426) and the other homologue (Trembl: O04079) which is reported as being 

responsible for the changes in the activity and mRNA of cinnamyl alcohol dehydrogenase 

during tracheary element differentiation in Zinnia elegans. Many observers have reported 

genes that appear a few days after culture as being possibly responsible for the organ 
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differentiation in cultured explants. In maize it seems that homeotic genes determine the 

differentiation of cells to leaf or hypocotyls (Strasburger, 1998). Spot No. 134 is homo-

logue to a protein, which is a transcriptional regulator in carrot (Trembl: Q43428) 

synthesized from the beginning of culture from t0 till t7 and t14. Spot No. 86, however, 

was newly synthesized for the first time at t7 and appeared at t14 too. This spot was 

homologoue with the (Trembl: O 04399) protein responsible for the cell cycle regulation 

of the transcription of plant cyclin genes of tobacco. Spot No. 199 is a homologue  (Swiss-

Prot: P27168) to carrot cytochrome C oxidase polypeptide II (EC 1.9.3.1), a component of 

the respiratory chain and an integral membrane protein in the inner mitochondrial 

membrane, which catalyzes the reduction of oxygen to water, having copper as its co-

factor. 

 

 

 

Protein spots which were identified as homologue but not merely originating from carrot, 

can be classified in three groups: 

 

 

 First, the spots, which were labelled at t0, t7 and t14 will be discussed. Spots 

labelled at t0 indicating a metabolic response by the cell to the application of the auxin 2,4-

D. These spots were homologues, for example spot 55, to Rubisco (EC 4.1.1.39), although 

there were many rubisco homologues which were merely stained with CBB, e.g.  spot 134 

carrot mRNA transcriptional regulator (Trembl: Q 43428). Spot 154 50s ribosomal protein 

(Trembl: P91353) originated from mitochondria. Spot 190 hypothetical protein (Trembl: 

Q57662). Spot 230 fragment of protein is a homologue to tyrosin  phosphatase (Trembl: 

Q16128) and spot 245 to NADH Dehydrogenase (Trembl: Q50183), spot 267 and 276 

homologues to RNA-binding proteins (Trembl: Q44555)). 

 

 

 

Second, a group of spots whose new synthesis started at t7 and were also synthesized at 

t14. 
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Spot 2 phenylalanin ammonia-lyase (PAL, EC 4.3.1.5), an enzyme which is probably 

located in cytoplasm, a key enzyme of plant metabolism catalyzing the first reaction in the 

biosynthesis of L-Phenylalanin, a source of a wide variety of natural products based on the 

phenylpropane skeleton catalytically activates L-Phenylalanin to be converted to trans 

cinnamate and NH3, having dihydroalanin (DHA) as its co-factor. This class of enzymes 

causes the formation or breakage of C-N bounds. The mode of activity of this enzyme in 

plants regulates either the protein to be synthesized, or phenols like anthocyanines. Being a 

key enzyme, its mode of action is controlled by different factors, such as light, temperature, 

ethylene and carbohydrate synthesis of the cell (Richter, 1996). 

 

Spot 22: pyruvate decarboxylase (EC 4.1.1.1) is also called alpha-carboxylase. The reaction 

catalyzed by this enzyme causes a 2-oxo acid to catalyze to an aldehyde and release CO2. 

This class of enzymes causes the formation and breakage of C-C bonds.  

 

Spot 43 and 186 (cytochrom-C oxidase, EC 1.9.3.1) and 232 (cytochrom b) were labelled at 

t7 and t14. Spot 24 (EC 1.14.14.1), 186 (EC 1.9.3.1), which was merely stained, also 

identified as homologue for cytochrom. The NADH and FADH2  molecules formed 

during the first three stages of aerobic respiration each contain a pair of electrons that were 

gained when NAD+ and FAD+ were reduced. The NADH molecules carry their electrons 

to the inner mitochondrial membrane, where they transfer the electrons to a series of 

membrane-associated proteins collectively called the electron transport chain. The first of 

the proteins to receive the electrons is a complex membrane-embedded enzyme called 

NADH dehydrogenase (Spot 245: EC 1.6.5.3). A carrier called ubiquinone (Spot 23: EC 

1.10.3.-) then passes the electrons to a protein-cytochrome complex called the bc1 

complex. This complex, along with others in the chain, operates as a proton pump, driving 

a proton out across the membrane. Cytochromes are respiratory proteins that contain 

heme groups, complex carbon rings with many alternating single and double bonds and an 

iron atom in the center. The electron is then carried by another carrier, cytochrome c, to the 

cytochrome oxidase complex. This complex uses four such electrons to reduce a molecule 

of oxygen, each oxygen then combines with 2 hydrogen ions to form water: O2  + 4 H+ + 

4e- ==> 2 H2O 
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This series of membrane-associated electron carriers is collectively called the electron 

transport chain. NADH contributes its electrons to the first protein of the electron trans-

port chain, NADH dehydrogenase (spot 42, 245: EC 1.6.5.3, EC 1.6.99.3 and 267: 

Q44555, Q33305). FADH2, which is always attached to the inner mitochondrial mem-

brane, feeds its electrons into the electron transport chain later, to ubiquinone (Spot 23: 

EC 1.10.3.- and 42 EC 1.6.5.3). It is the availability of plentiful electron acceptor (often 

oxygen) that makes oxidative respiration possible. The electron transport chain used in 

aerobic respiration is similar to, and may well have evolved from, the chain employed in 

aerobic photosynthesis (Häder, 1999; Michal, 1999; Neumann, 1995; Richter, 1996). 

 

 

Rubisco (Spot 46 LC Rubisco precursor, Spot 55 and Spot 47 EC 4.1.1.39) is necessary for 

carbon fixation and is located in chloroplasts. It catalyzes two reactions: the carboxylation 

of D-Ribulose 1,5-Biphosphate, the primary event in the photosynthetic CO2 fixation, as 

well as the oxidative fragmentation of the pentose substrate in the photorespiration 

process. Both reactions occur simultaneously and in competition at the same active sight. 

Substrates of this enzyme are CO2, H2O and O2, having Cu as co-factor producing two 

metabolites, 3-Phospho-D-Glycerate and 2-Phosphoglycolate (Haeder, 1999; Michal, 1999; 

Neumann, 1995; Richter, 1996). 

 

 

 

Spot133: EC 2.5.1.- and Spot 128: EC 2.5.1.- homologue to phytoen synthase of the 

carotinoid and isoprenoid biosynthetic pathway, in which  2 Geranyl Diphosphate (see 

Spot 137: EC 2.5.1.10), an open chain monoterpen, is catalyzed to pyrophosphate and 

phytoene. Phytoene is located in the plastid and thylakoid membrane. In plants the enzyme 

complex of phytoene synthase (Spot 133: EC 2.5.1.-) produced first cis-Phytoene, then 

trans-Phytoen. The membrane associated Phytoene-Desaturase oxidizes phytoene through 

different steps to all-trans- α- or β-Carotin (Haeder, 1999; Michal, 1999; Richter, 1996). 
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Spot 136 (Q43426) is a homologue to DNA binding protein homeobox genes. In 

homeotic genes, the region of homology, usually 180 bp in length, located within the 

coding sequence of the gene is called homeobox gene. It is a gene that plays a role in 

determining a tissue´s identity during development (Hartwell, 1999). Spot No. 136 is 

labelled at t7 and t14, but absent at t0. This pattern suggests that the synthesis of the 

protein spot can be part of the induction program. The homologue of this spot has been 

reported by Komamine (1995) registered as carrot mRNA for DNA-binding protein a 

transcriptional regulator, homeobox genes (Trembl: Q43426) and the other homologue 

(Trembel: O04079) which is reported to be responsible for the changes in the activity and 

mRNA of cinnamly alcohol dehydrogenase during tracheary element differentiation in 

Zinnia elegans. There are a few more candidate spots, which presumably are involved in 

similar developmental events (Haeder, 1999; Michal, 1999; Richter, 1996). 

 

 

 Third group of protein homologues are those spots, which were labelled at t14, 

meaning a new synthesis of protein at late stages in induction, which probably could play a 

decisive role in the induction of somatic embryo development. 

 

Spot 44 is a homologue to α-Amylase (EC 3.2.1.1). Spot 143 (EC 3.2.1.39) has been 

identified as homologue to α-Amylase and Spot 146 (P79062) and 162, suggesting that 

there is a continuous activity of this enzyme during t0, t7 and t14, but at 14th day of culture 

the new synthesis of this enzyme can be an indication of the stimulation of transcription 

and a high demand of the cell for energy to support its increased demand for the metabolic 

functions of the developing meristems. Spot 138: EC 2.7.1.4, fructokinase is precursor of 

Spot 130: EC 2.7.1.11, phosphofructokinase, Spot 45: EC 2.7.1.40, is analog to Pyruvate 

Kinase.  
 

 On the basis of homologue spots identified in these experiments, it can be 

concluded that during the induction stage of carrot petiole culture and after application of 

the auxin 2,4-D, there are changes leading to an increase in energy production, cell division 

and many other cell metabolic activities, transcription, translation and replication, leading 

to an increase in secondary metabolic compounds such as anthocyanin and a higher 
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synthesis of phytoen as carotinoids. An increase in anaerobic glycolysis due to low oxygen 

partial pressure of the culture, leads to changes in energy household of the cultured cell, an 

increase in synthesis or break down of alcohol or photorespiration in response to the 

increased metabolic demand of the induced cells and changes in carbohydrates household, 

such as starch and sugar synthesis and degradation.  

 

 

 Carbohydrate metabolisms plays an important role in the induction of somatic 

embryogenesis. Carbohydrates, particularly glucose are essential for the realization of 

somatic embryogenesis in autotroph cultures. Glucose in itself has rather a regulatory 

effect on the induction and realization of somatic embryogenesis (Pleschka, 1995). 

Substances with low molecular weight can also affect somatic embryogenesis due to 

compartmentalization of the cell.    
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5 DISCUSSION 
 
 
 
 

5.1 Histology of Somatic Embryogenesis 
 
 
The first step in this study was to examine the histomorphological changes in the cultivated 

petiole explants of Daucus carota. 

The histological observation of the petiole explants showed that different parenchymatic 

cells e.g. cells with different positions in the tissue, show different competence, which is 

characterized for a special morphogenic process. Moreover, this morphological processes 

occurs at different intervals of time. First, parenchematic cells around the vascular bundles 

are induced to rhizogenesis, and later, sub-epidermal cells induced to somatic embryogene-

sis. An aggregate of parenchematic cells in the vicinity of the vascular bundles is trans-

formed to cytoplasm-rich cells 24–48 hours after culture in an auxin-containing medium. 

The cell aggregates can be distinguished microscopically from the adjacent cells in the 

petiole transection (Schäfer, 1985). On the second day of the culture, these cells start to 

divide, on the fourth day of the culture, meristemic zones can be observed with the growth 

direction toward the epidermis. These meristemic zones of petiole explants can give rise to 

adventive roots after transfer to an auxin-free medium or a medium with low concentra-

tion of auxin. The histological observations indicate that the rhizogenic competent cells are 

originally vacuolized, appearing in the vicinity of vascular bundles. According to our 

observation, cambial cells do not participate in this process, it is, however, not clear if the 

cells originate from phloem or xylem parenchyma. There are reports about pericycles as 

the origin of the adventitious roots; others (Esau 1969) reported the primary phloem as the 

space between the phloem strands and intervascular parenchyma, which can be the origin 

of the adventive roots. Zee et al., (1979) observed this phenomenon  more towards 

phloem rather than xylem. Morphogenic structures of the original rhizogenic zones are 

different from those of adventive root primordias. 
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Application of 2,4-D leads to the emergence of competence in the rhizogenic meristems 

growing towards the periphery. At this stage there is no connection between the appearing 

meristems and the vascular bundles. The growth of these meristems leads to the rupture of 

the neighboring tissue. Guiderdoni and Demarly (1988) observed the same trend in sugar 

cane. They reported a meristemic active zone around the vascular bundles. These 

meristems ruptured the tissue and the epidermis so that they came in direct contact with 

the nutrient medium. Afterwards, all the meristems formed a primordium, which later took 

the function of root meristems. De Vries et al. (1988) are of the opinion that 15 days after 

the culture of hypocotyle explants of carrot the emerging cells or callus are not embryo-

genic. They are still connected to the explants, which upon transfer to a hormone-free 

medium can give rise to root. Some reports claim on the content of the reduced nitrogen, 

which determines the nature of the meristems (Halperin 1966; Jones 1974). Jones (1974) 

and Konar et al, (19072a) propose two possible ways for the formation of roots in cell 

suspension culture, the first from PEMs or meristemic zones on the outer periphery of the 

callus, the second possible way is the formation of the root from the meristem cells located 

at the very center of callus, which resembles the development of the secondary roots. Kato 

and Takeuchi (1963) reported the development of embryos and the formation of root and 

shoot as non-polar organs from carrot root callus. The so called neomorphs have been 

reported by many observers using different media and culture conditions (Krikorian and 

Kann, 1981). These structures do not always show a clear structural variation from 

embryos. Embryos show a distinct polarity accompanied by a defined root pole, neo-

morphs are more or less callus-like structures and can even possess a smooth surface. This 

phenomenon has been observed by Krikorian and Kann (1981) in Hemerocallis suspension 

culture, Trolinder and Goodin (1988) using Gossypium hirsutum explants, and Konar et al, 

(1972a) in Atropa belladona suspension culture. There were no signs of root formation when 

carrot petiole explants were cultured 14 days in a modified B5+ with 0.5 ppm 2,4-D (Grieb 

et al., 1992). Trolinder and Goodin (1988) using a low concentration of the auxin 2,4-D or 

short exposition of explants to auxin resulted in the formation of roots. This could lead to 

the conclusion that the development of adventive roots is dependent on the concentration, 

duration of contact and the type of auxin used (Grieb et al., 1992; Kamada and Harada, 

1979a; Trolinder and Goodin 1988). Li and Neumann (1984) used the unstable auxin IAA 

and the stable auxin 2,4-D to observe the transformation of the vacuolized parenchematic 
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cells located around the vascular bundle into cytoplasm rich rhizogenic competent cells. In 

case of unstable IAA, the parenchematic cells could differentiate to adventive roots. In a 

2,4-D treatment, however, parenchaymatic cells could not differentiate to form advantive 

roots. Neumann (l995) is of the opinion that for the differentiation of the cells a so-called 

quiescent period is needed. This quiescent period is not afforded when the cells are 

subjected to an intensive and permanent cell division, which is the case when auxin 2,4-D 

is used (Linser and Neumann, 1968; Fellenberg, 1978). When IAA is supplemented to the 

culture, it degrades in 4-6 days and the cells have the so-called, quiescent period, and 14 

days after the culture root formation can be observed. Kinetin induced high cell division in 

the IAA system, and the formation of meristems only around the vascular bundles was 

observed without any root formation (Neumann, 1972; Schäfer, 1985). In the same B5+ 

petiole culture (0.5 ppm 2,4-D) 10 days after, vacuolized cells, which tended to be nearer 

the epidermis than the vascular bundles were transformed to cytoplasm rich cells. After 14 

days these cells were scattered along the long axis of the 1 cm long petiole explants (Grieb 

et al., 1992; Zee and Wu, 1979; Schäfer, 1985; Diettrich et al., 1986). This phenomenon is 

observed in other plant species too like clover (Cui 1986) and coriander (Schäfer, 1985; 

Zee, 1981). It seems there is a varying induction in time and subsequently varying 

differentiation of cells in different parts of the tissue, so that by using the auxin 2,4-D, first 

the vacuolized cells around the vascular bundle differentiate to rhizogenic meristems, and 

secondly the vacuolized sub-epidermal cells differentiate to embryogenic meristem. This 

trend has been observed in other Daucus spp (Le, 1996) and other members of umbeliferae 

e.g. parsley (Peteroselinum crispum) and dill (Anethum graveolens, Schäfer 1985). According to 

Grieb et al., (1997) at the beginning of this process cells near the glandular channels 

differentiate into cytoplasm-rich cells, later on other cells which are located between the 

glandular channel and the epidermis transform to cytoplasm-rich cells. The vacuolized 

parenchematic cells are smaller in size as compared to the cells of ground cambium tissue. 

The cytoplasm-rich cells undergo cell division resulting an intensive protein synthesis 

(Nomura and Komamine, 1986b; Grieb et al., 1992) resulting in a polarization of 

embryogenic competent cells (Handro et al., 1973, Halperin and Jensen, 1967). Different 

morphogenic reactions according to Grieb et al., 1992, are related to position effects within 

the explants or the location of the cell in the tissue.  Steward et al, 1965, argue that a 

prerequisite for the induction of somatic embryogenesis is the isolation of embryogenic 
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cells from their neighboring cells. Sussex 1983 proposed that a minimum specific numbers 

of cells is required in the culture, so that they become able to respond to an induction 

signal (Reinert, 1970; Wetherell, 1984; Nomura and Komamine, 1985; Halperin, 1966). 

Embryogenic cells undergo many cell divisions and form embryogenic meristems or 

PEMs. These structures can be observed microscopically using a cytoplasm dyeing agent. 

Embryogenic and rhizogenic meristems rupture the epidermis, detach themselves from the 

rest of the tissue, and go over to the nutrient medium (Halperein and Jansen, 1967; Torrey 

and Reinert, 1961; Grieb et al., 1992). 14-16 days after the culture in an auxin-containing 

medium, induction of somatic cells is complete (Grieb et al., 1992). Petiole culture using 

the stable auxin 2,4-D leades to indirect embryogenesis (Grieb, 1992) using IAA, however, 

results in direct embryogenesis (Schäfer, 1985). It seems that the type of embryo develop-

ment is related to the kind, concentration, and duration of culture in auxin containing 

medium (Grieb, 1992). Grieb (1992) reported the existence of different cell types in 

embryogenic clusters or PEMs. According to Grieb (1992) cells on the periphery of 

embryogenic PEMs / clumps undergo an embryogenic development. The cells in the 

center of PEMs / clumps do not undergo the process of embryogenic competence. 

McWilliam et al. (1976) proposed that the cells which have entered embryogenic develop-

ment inhibit the neighboring cells, through which these cells lose their starch content, 

absorb water, become enlarged, and become apparent as microscopic visible vacuoalized 

cells, as if the cells located in the center of meristem serve as an energy source for the cells 

on the periphery, which have attained the embryogenic competence. 

LoSchiavo et al. (1989), using Daucus carota petiole explants in B5+ medium, have 

suggested a hypothetical schema for somatic embryogenesis at cellular level. According to 

this schema, the very first prerequisite for somatic embryogenesis is the embryogenic 

potential of the cell. This prerequisite, according to Steward et al. (1970), is nothing but the 

totipotency of the cell and genotype (Li and Neumann, 1985; Brown and Atanassov, 1985). 

Another parameter is the competence of the cell by itself, or in other words the ability to 

react according to the inducing stimulus. Furthermore this competence depends on the 

position and type of the cell in the plant tissue (Grieb et al., 1992). Developmental stages 

of the mother plant and the explants type e.g. leaf, petiole or root can also be a determin-

ing factor. According to Grieb et al. (1992) the hypocotyl cells of Daucus carota possess a 

greater embryogenic capacity than the root cells. The induction stage of somatic embryo-
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genesis in carrot petiole explants starts with their culture in an auxin-containing medium, 

accompanied probably by DNA methylation and dedifferentiation (LoSchiavo et al., 1989). 

From the transformation stage, the cells progress into the determination stage induced by a 

stimulus indicated by cytoplasm accumulation in the cells, which are microscopically 

visible. The transformation stage is followed by an initiation stage in which the first cell 

division occurs. This stage is the birth-place of embryogenic meristems. There are some 

reports about the necessity of carbohydrates and other energy sources for the induction of 

somatic embryogenesis in carrot petiole cultures (Grieb et al., 1992). Neumann, de Garcia 

(1974) and Pleschka (1995) suggested that realization of embryogenesis necessarily needs 

an exogenous source of carbohydrate. The subculture of petiole explants in an auxin-free 

medium leads to the realization of somatic embryogenesis, which goes through globular, 

heart, torpedo stages, and finally ripe embryos form. 

 

 

 

 

5.2 Protein Synthesis During Induction of Somatic Embryogenesis 
 

 

The induction of embryogenic competence in carrot petiole culture is characterized by 

cytoplasm and organelle protein synthesis (Grieb, et al., 1997). Inhibition of 70S ribosomal 

protein synthesis in cell organelles using chloramphenicol (CAP) leads to inhibition of the 

cell translation process, resulting in a slowing down of the log phase period and a 

prolongation of the stationery phase (Grieb, 1992). Bahr (1988), using carrot root explants 

and tobacco petiole explants, reported 5 days delay in the exponential developmental stage 

using 6 ppm CAP. 

 

CAP caused an increase in abnormal embryonic structures and the number of embryos in 

the culture (Grieb, 1992). Nuti Ronchi et al. (1984) reported a similar trend when amino 

acids, specially prolin, were supplemented to the auxin-containing culture. It has been 

reasoned that through CAP inhibition amino acids become more readily available (Grieb, 

1992), followed by an increase in the mitotic activity of the cell (Nuti Ronchi et al., 1984). 
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Application of the translation inhibitor CAP causes a reduction in cell division activity 

(Bahr, 1988; Dadkhahi, 1978; Dadkhahi et al., 1982) and determines if the cells undergo 

the division or differentiation process (Grieb, 1992). Sethi et al. (1990), using transcription 

inhibitors cordycepin and actinomycin D, observed a similar trend leading to shoot 

differentiation in tobacco and Datura cell cultures. Organel proteins can have a regulatory 

function and control growth and development (Grieb, 1992). When these regulatory 

proteins are lacking, the cell cycle loops, causing a continuous cell division and increasing 

possibly embryonic material. The regulatory effect of the differentiation status depends on 

the embryonic cell and pre-embryonic stage (Grieb et al., 1997). Probably after sub-

culturing the plant material in an auxin-free medium, the inhibition of some specific 

proteins of 70S organelles is terminated so that the embryonal development can be realized 

(Grieb et al., 1997). It is also reported that the embryogenic competence is not directly 

related to the division rate of embryonic material. What is principally important is that in 

the first instance the cytoplasm protein synthesis is vital for cell metabolism. Cytoplasm 

protein synthesis alone can bring the carrot embryogenic cell to the early torpedo stage, 

and probably organelle protein synthesis is not essential up to this stage, however, essential 

before the cotoledonary stage (Grieb, 1992). The transition of globular to heart and 

torpedo is an embryonic development process, the torpedo stage by itself is a control 

point, acting in the way zygotic embryo behaves. Giuliano et al. (1981) suggested that there 

are two ways of genetically controlling embryogenesis: one, up to globular form, and two, 

heart and torpedo form. He argues this hypothesis based on the result of an experiment in 

which the synchron cultures could only be established consisting of globular stage (Cyr et 

al., 1987; Scheibner et al., 1989). According to Cyr et al. (1987) the protein content of 

PEMs and globular are the same. The transition of globular to heart stage is coupled with 

the polarization of embryo and the differentiation of procambium; the transition of 

torpedo to mature embryo is coupled with intensive growth, increase in cell size and the 

formation of vascular elements (Cyr et al., 1987; Sciavone and Cooke, 1985). The protein 

content of cells at the torpedo stage is two times more than that of the globular stage, and 

the pattern of soluble proteins is associated with an increase in starch content of the cells 

(Zee and Wu, 1979; Cyr et al., 1987). Induction of somatic embryogenesis can be described 

using the regulation model of gene activation, proposed by Davidson and Britten (1979). 

They proposed that each structural gene possesses several receptor genes, so that a 
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structural gene can be regulated by different effectors; on the one hand, one receptor gene 

decides on the regulation of different structural genes so that through a single signal 

different gene batteries can be activated (Kleinig and Sitte, 1984), on the other hand, a 

single receptor gene decides on the transcription of many structure genes so that through a 

single signal different gene batteries can be activated. Hierarchical activation of protein 

synthesis has been reported in induced carrot callus root phloem explants (Gartenbach-

Scharrer, 1988; Gartenbach-Scharre et al., 1990). Cremer et al. (1991) observed activation 

and termination of gene activity at the mRNA level in Sinapsis alba leaves. The physiologi-

cal and differentiation status of petiole explants can be correlated, quantitatively and 

qualitatively, to the synthesized protein spots of a particular developmental stage. Whether 

the newly synthesized protein can be correlated to the differentiation process, i.e. 

correlated to embryogenesis or rhizogenesis, is not quite clear. McGee et al. (1989), 

compared the pattern of protein synthesis of an embryogenic line with a non-embryogenic 

line. He found two protein spots, which were present in the embryogenic line but absent in 

the non-embryogenic line, and postulated that these two spots play a role in carrot somatic 

embryogenesis. Ramgopal (1989) and many other researchers used this model to describe 

somatic embryogenesis at the molecular level.  It is not clear if a single protein or a group 

of proteins plays a key role in the induction of somatic embryogenesis. Choi and Sung 

(1984) suggested that in an interaction with other non-embryogenic proteins the embryo-

genic proteins could exert an embryogenic function, leading to the induction of somatic 

embryogenesis. The patter of protein synthesis is not merely a qualitative parameter, 

meaning that not only the presence or absence of a protein in a specific period of a 

developmental stage is the cause of a specific biochemical change leading to a specific 

behavior of the cell, but it is also a quantitative parameter, meaning the intensity of the 

protein synthesis can also cause specific biochemical changes in growing cells and 

meristems, resulting in growth and developmental changes and behavior. Quantitative 

changes in protein pattern can trigger different differentiation modes (Grieb et al., 1992). 

This phenomenon has been observed in the formation of homeobox gene proteins in 

Xenopus laevis, in which a protein and its concentration triggered a specific differentiation 

mode. This specific differentiation mode leads to the formation of the small finger of the 

frog (Robertis et al., 1990). It is not very rational, however, to presume that a specific 

protein must be synthesized for the formation of each finger of the frog. It is almost 
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certain that the induction of somatic embryogenesis in petiole explants of carrot is 

regulated by auxin. A cell is induced when the indigenous balance of auxin and cytokinin in 

the cell is changed (Li et al., 1985; Schaefer et al., 1988; de Vries et al., 1988; Wilde et al., 

1988). There are other reports arguing that the nutritional status of the cell, especially 

nitrogen nutrition, causes an increase in indigenous auxin in the cell, and other reports 

stating that the sugar metabolism of the cultured cells, which is the energy source for the 

metabolic activities of the cell, triggers the induction of embryogenesis and obviously has a 

regulatory function (Pleschka, 1995). 

 

 

 

5.2.1 Protein Pattern of the Cultured Petioles 
 
The program of histological and cytological differentiation is supposed to be accompanied 

by a program of molecular differentiation (Grieb et al., 1997). To describe the physiologi-

cal status of the entire explants, which permits the induction of some cells in petiole tissue 

to perform somatic embryogenesis, soluble protein patterns at different stages during the 

induction phase were determined. These investigations were conducted at t0, t7 and t14, 

which characterized the protein complement and the formation of rhizogenic centers in 

the vicinity of vascular bundles and embryogenic centers underneath the epidermis. The 

evaluation of the different developmental stages provided a chance to illustrate proteins 

characteristic for a specific embryogenic status of the explants. The evaluation of the 

electropherograms and the obtained data demonstrate a sharp increase in total protein and 

in the number of single proteins, which occurs during the first seven days of culture. In the 

first labelling period (t0), 91 proteins could be detected, a sharp increase in the number of 

protein spots was observed at the second labelling period (t7). At this stage, 250 protein 

spots could be detected, 15 spots were common with the first labelling period and 156 

spots were present as additional spots. The specific radioactivity of the total soluble protein 

at t7 increased after the application of 14C-leucine, as compared to t0, similarly, the protein 

concentration increased. This indicates that at t7 the rate of protein synthesis is higher as 

compared to the previous period. No more than slight changes can be seen in the protein 

pattern at the third labelling period (tl4), with 17 newly synthesized protein spots from the 
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whole of the 257 detected, and 12 absent as compared to the former period (t7). The 

number of identical protein spots at both stages (t7 and t14) of the cultural cycle counts to 

143. The protein concentration remains nearly at the equal level as at t7. On the other 

hand, the specific radioactivity of soluble protein was significantly reduced as compared to 

the earlier stage. Apparently, at this time the overall protein synthesis activity is reduced, 

but some metabolically relatively stable proteins synthesized during a previous period 

accumulated. During the first period of culture, a new protein-synthesizing program is 

apparently initiated in the cultured petioles, which merely undergoes some slight modifica-

tions afterward from t7 to t14. Endogenous concentrations of IAA in cultured carrot 

petiole explants show a similar pattern to the pattern of protein synthesis observed during 

this experiment (Grieb et al., 1997). Endogenous IAA concentrations in petiole explants 

were determined at t0, t7, t10 and t12 (Grieb et al., 1997; Imani, 1999). Results on the 

distribution of endogenous IAA within the explants, (obtained by using petiole explants of 

transgenic carrot plantlets at t0 and t5, containing the auxin sensitive MAS- promoter 

coupled to the GUS reporter gene indicating its activity with X-Gluc as a substrate to give 

a blue color), indicated that the presence of IAA is more or less evenly distributed 

throughout the petiole cross-section at t0. At t5, however, the X-Gluc response is mostly 

restricted to the cells around the vascular bundles destined to become root primordia. 

Some IAA also seems to occur in some areas of the section near the epidermis, where the 

development of somatic embryos can be observed after 10-12 days of culture. The 

remaining areas of the petiole, the originally occurring IAA is either inactivated by 

breakdown (or conjugation or both), or translocated to these morphogenic centers (Grieb 

et al., 1997). 

If a protein spot is only stained, in that case its synthesis should have occurred prior to the 

labelling period and this should have ceased at the time of investigation. On the other 

hand, protein spots only labelled seem to be distinctively synthesized at the time of 14C-

leucine application. Proteins labelled and stained could have been synthesized prior to the 
14C-leucine application and the synthesis sustained during the three-hour labelling period.  

A detailed description of all data obtained in the study is given in appendix E. For 

interpreting and grouping the proteins detected according to the occurrence at different 

stages of the growth phase and the stainability with CBB and/or labelling with 14C-leucine, 
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the protein group classification of Grieb  (1992) and McGee et al. (1989) is used for 

orientation. 

Group 1: Proteins present only in the petiole explants during the first labelling period (4 

proteins = 1.4 %) 

 

Group 2: Proteins present at t0 and t7 (4 proteins = 1,4 %) 

Group 3: Proteins present at all stages investigated either stained with CBB and / or la-

belled (28 proteins = 9,9 %) 

 

Group 4: Proteins only labelled during the first 5 hours after inoculation, which are miss-

ing at later stages (9 proteins = 3.2%) 

 

Group 5: Proteins labelled during the first 5 hours after inoculation, which however, are 

present throughout the experiment (44 proteins = 15.6 %) 

 

Group 6: Proteins detectable only at t7 and t14 (166 proteins = 58.9 %) 

6.1: Proteins stained at t7 and t14 (29 proteins = 10.3 %) 

6.2: Proteins labelled and stained at t7 (78 proteins = 27.7%) 

6.3: Proteins newly synthesized at t7 (59 proteins = 20.9 %) 

 

Group 7: Proteins present only at t7 (8 proteins = 2.8 %) 

 

Group 8: Proteins present only at t14 (17 proteins = 6 %) 

 

Group 9: Proteins present at t0 and t14 (2 proteins = 0.7 %) 

 

The changes in the protein pattern were associated with the various stages in the cultural 

cycle investigated (Grieb et al., 1997). After 5 hours of culture, proteins of the groups 1 - 5 

and of group 9 were detected, at t7 the proteins of groups 2,3 and 5 – 7, and at t14 

proteins of groups 3, 5, 6, 8, and 9 appeared at the same time. Apparently, these changes in 

the protein complement are supposed to be part of a program of molecular differentiation, 

as the histological investigations illustrate. Apparently, alteration in differentiation of the 
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petiole explants during the cultural cycle of 14 days consists of a sequential, ordered 

activation and termination of genetic sub-programs. Group 1 is the termination of the first 

sub-program of the petiole, being representative for the original tissue. At the mean time, a 

sub-program linked with explantsation and the inoculation procedure is activated (group 4) 

and terminated before t7. A different sub-program, which is already active in the petiole, 

on the other hand, continues during culture (group 3). Proteins of this sub-program are 

supposed to have housekeeping function for the carrot petiole. The proteins of group 2 are 

already synthesized in the petioles at t0, but at t7 of culture their concentration is reduced. 

They were only labelled and at t14 they are no longer detectable. Furthermore, a sub-

program represented by 44 proteins starts at t0 (group 5) and continues throughout the 

culture period. It seems that, these proteins are typical of cultured petiole explants. 

Formation of the rhizogenic centers in the vicinity of the vascular bundles (t7), could be an 

indication that the proteins of some other sub-programs are synthesized (groups 6 and 7). 

Still, a large group of these proteins (166) is also present at t14 (group 6). The 8 proteins of 

group 7 could only be detected at t7 and should be specific for this physiological stage. 

This is an indication that inside the differentiation program in the cultured petiole, sub-

programs are constantly switched on and off at distinct stages in the cultural period. It is 

important to know, which function each individual sub-program accomplishes, for the 

continuous progress of the differentiation program of the petiole all-together. Even if the 

extracts used for 2 D-electrophoresis contain proteins from different cells of the petiole 

explants, as historadioautograms specify e.g. at t7 most of the 14C-leucin is assimilated and 

concentrated adjacent to vascular bundles, and to a lesser degree in the epidermis area. So 

the largest part of the proteins labelled are supposed to have been synthesized in these 

morphogenic areas of the cultured explants. At t14 only rather small changes in the protein 

pattern can be observed as compared to t7, coinciding with the appearance of the 

cytoplasm-rich, sub-epidermal cells with latent embryogenic potential and embryogenic 

centers. At t14, proteins of group 8 not present at t7 are merely stainable and should have 

been synthesized between 7 and 14 days of the cultural period (spot No. 13, 74, 76, 97, 

106, 142, 144, 145, 146, appendix E). Remaining spots, however, are traceable by the stain 

and label both, and therefore the synthesis of these should have happened between t7 and 

t14 and should continue at t14 (4 proteins: No. 85, 87, 88, 130, appendix E). Four proteins 

of this group are merely labelled at this period (No. 117, 118, 119, 192, appendix E). The 
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interesting question is, which protein or group of proteins at t14 are explicitly related to 

somatic embryogenesis. 

 

 

5.2.2 Elucidation of Inductive and Control Mechanisms During Somatic Embryo-
genesis 
 
One important aspect of tissue culture is the production of plant secondary products, one 

of these products is anthocyanine. Cultivated carrot root explants are capable of producing 

high amounts of anthocyanine (Neumann, 1996). Iron increases anthocyanin production 

and molybdenum reduces production of this secondary product. Production of anthocya-

nin is related to the interaction between nitrogen and carbohydrate metabolism of the cell. 

Iron increases sugar uptake from the medium resulting in carbohydrate accumulation in 

the cell, molybdenum as a cofactor of the enzyme nitrate reductase increases the activity of 

this enzyme, resulting in higher amino acid synthesis and a higher sugar demand (Neu-

mann, 1995). The influence of ethylene on anthocyanin, anthocyanidin and carotinoid 

accumulation in Vaccinium pahalae suspension culture showed that an exogenous applica-

tion of ethanol significantly reduced growth and secondary metabolites production, 

whereas incorporation of 5.0-10.0 mg l-1 NiCl2 effectively reduced ethylene accumulation 

and improved product accumulation (Shibli et al., 1997). The effect of light and light 

quality on Vitis vinifera L. embryogenic culture suggests that phytochrome appeared to be 

inductive, although this effect was adversely influenced by the blue absorbing photorecep-

tor e.g., anthocyanin 

 

During oxygen limitation in higher plants, energy metabolism switches from respiration to 

fermentation. As part of this anaerobic response, the expression of genes encoding 

pyruvate decarboxylase (PDC) and alcoholdehydrogenase (ADH) is strongly induced 

followed by changes in post translational regulation (Bucher, 1994). Bucher et al. reported 

ethanolic fermentation in transgenic tobacco expressing Zymonoonas mobilis pyruvate 

decarobxylase, stating that aerobic fermentation takes place when the respiratory system is 

inhibited, without increasing ADH transcriptional level. Expression of enzyme ADH, 

ethanol and acetaldehyd production is practically demonstrated in all tissue culture 
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experiments (Neumann, 1995; Yatazawa and Furhashi, 1982). GC experiments showed 

that the retention period of peak of a sample of carrot cell suspension culture liquid 

solution during induction phase (0.5 ppm 2,4-D) corresponded with retention period of 

peak of ethanol. Enzyme analysis of ADH in carrot cell suspension culture also indicating 

presence of alcohol in culture liquid solution (unpublished results of our institute).  Now 

the question arises, if and up to what extent in culture liquid solution dissolved alcohol 

influences the permeability of the cell wall and cell membrane and their selectivity. NO3- 

and NH4+ nutrition influence fermentation, so nitrate may serve as an alternative electron 

acceptor in anaerobic plant metabolism and the nitrate-supported energy charge may be 

due to an accelerated glycolytic flux resulting from a more effective NADH reoxidation 

capacity by nitrate reduction plus fermentation than by fermentation alone (Muller et al., 

1994). 

 

Higher plants need high concentration of oxygen for their metabolism and growth, 

however, some plants like rice have developed a mechanism to encounter low assimilation 

of oxygen. In this case, saccharose as the product of starch mobilization produces 

fructose-6-phosphate through starch depletion, and alcohol in the form of ethanol will be 

formed. During the low partial pressure of oxygen (anoxia) practically ATP synthesis via 

oxidative phosphorylation is drastically slowed down but important processes of dissimila-

tion like oxidative decarboxylation and the citrus cycle still function. For the production of 

ethanol from pyruvate as the end product of glycolysis the enzyme pyruvat Decarboxylase 

(spot22: EC 4.1.1.1) catalyzes pyruvate to acetaldehyde (spot 132: P97091) and CO2.  

Activity of this enzyme depends on the concentration of partial oxygen pressure and rises 

with the intensity of anoxia. In maize its activity becomes 5-9 times more than the control. 

In the next step, alcohol dehydrogenase (spot 80: EC 1.1.1.1) catalyzes the NAD bound 

hydrogen, which was formed during glycolysis leading to ethanol formation and reoxida-

tion of specific metabolites causing glycolysis remain active, despite partial pressure of 

oxygen (Bucher et al., 1994; Richter, 1996; Haeder, 1999; Michal, 1999).  

Rubisco enzyme activity of carrot secondary phloem explants showed a continuous 

increase. 14C labelled Rubisco already showed a new synthesis of this enzyme a few hours 

after inoculation in an auxin-containing medium. By transition of explants from log phase 

(5-7 days) of cell division to stationary phase as autotrophic nutritional mode, the activity 
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of this enzyme increased drastically (Kumar et al., 1982). Rival et al. (1997) mentioned a 

38.8 % increase in Rubisco activity in maize somatic embryos. 

α-Amylase hydrolyses starch, a polymer reserve substance, which affects osmotic pressure 

of the cell and related poly- and oligosaccharides producing eventually glucose. This 

enzyme is located in the starch sucrose pathway. Changes in α-Amylase activity during 

plant regeneration from rice calli showed an increase in α-Amylase activity in regenerative 

calli after transfer to the regeneration medium, while the calli transferred to callus 

maintenance medium did not increase and maintained a stable state (Abe et al., 

1996;Sreedhar and Brewley, 1998). As it was discussed before, there are many reports 

concerning the accumulation of starch in tissue culture cells and in different meristem cells 

(Grieb et al., 1992, Matsumoto, 1996, Cailloux, 1996, Gram, 1996, Canhoto, 1996, 

Pedroso, 1995 and still unpublished new results from our institute). There are also reports 

stating that the mineral nutrition, especially nitrogen- and sulfur-containing compounds, 

enhances the synthesis of storage reserves and the accumulation of starch in developing 

somatic embryos of alfaalfa (Medicago sativa). Some other reports suggest that a proper 

combination of carbohydrate and osmoticum e.g. polyethylene glycol enhances somatic 

embryo maturation in loblolly pine (Pinus taeda L.) and even improves the morphology of 

zygotic embryos (Li et al., 1998). Observations suggest that phytohormones possess a gene 

activating potential and have a stimulatory effect on the activity of the enzyme. The most 

prominent example is the mobilization of reserve carbohydrates in the aleuron layer of 

seeds through GA hormone signals leading to embryo mobilization of a homologue to 

Spot 137 (EC 2.5.1.10) as a precursor of GA and ABA synthesis (Richter, 1996). Carman 

et al., (1996) reported that concentrations of carbohydrates and sugars, like maltose and 

sucrose, in the endosperm of Triticum aestivum L. during early embryony increased to high 

levels, which is evidence that stored fructans and amylopectines in the endosperm are 

hydrolyzed and used as nutrients by the growing embryo. Lou et al., (1995) reported the 

beneficial effect of sugar as a carbohydrate source and affector of osmotic potential and its 

concentration in initiation media for inducing somatic embryogenesis in cucumber 

(Cucumis sativus L.). Carbohydrates seem to be a critical factor. Embryogenic efficiency and 

embryo development are promoted by high carbohydrate concentration (Loiseau et al., 

1995). Although petiole cells are incubated in an auxin-containing medium, it is not 

probable that the new synthesis of α-Amylase at this stage is signaled by auxin, although 
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presence of some forms of α-Amylase has been observed during all periods in these series 

of experiments. Starch is a mixture of amylose and amlyopectin. Amyloplast and chloro-

plast are the location of synthesis of starch in plant cells. So fructose 6-P and glucose 6-P 

produced during photosynthesis will be converted to glucose 1-P and subsequently to 

ADP-D-glucose, which is acting on primary sugars and leads to starch synthesis. High 

concentrations of saccharose in the cytosol lead to a decrease in Pi- and an increase in 3-

phosphoglycerate concentration, resulting in the coordination of both photosynthetic 

products, and ultimately, a higher rate of starch and sucrose synthesis. The activity of 

starch synthesis later leads to a linear production of amylose, which branches later by a 

glucan branching enzyme to amylopectin. The degradation of starch can be realized 

through three classes of enzymes, exo-enzymes like β-Amylase, endo-enzyme like α-

Amylase, or degradation by phosphorylation. Different enzymes degrade starch, Amylase 

and amylopectin, leading to the production of different end products. Once through 

hydrolyzes of polysaccharide glucose bound by specific glycosidase like α- and β-Amylase, 

leading to the production of disaccharide maltose, which later, through catalytic activity of 

maltase, produces free glucose, or through phosphorylase which catalyses starch G-1-

phosphate to high-energy monosaccharide. In this process, in chloroplast localized 

phosphoglucomutase converts G-1-phosphate to G-6-phosphate. Glucosephosphat-

Isomerase catalyses G-6-phosphate to F-1-phosphate, which later through ATP dependent 

phosphofructokinase will be converted to Fru-1,6-P2. Cleavage of this product by 

fructosebiphosphat-Aldolase delivers 2 molecules of a triosephosphate, which can readily 

be exported from the chloroplasts (Haeder, 1999; Lehninger, 1994;Michal, 1999;Neumann, 

1995;Richter, 1996;Strasburger, 1998). Regulation of glycolytic metabolism in fresh-cut 

carrots under low oxygen atmosphere suggests that phosphofructokinase may be involved 

in the regulation of glycolysis under low oxygen atmosphere (KatoNoguchi, 1996), but 

differential transcript levels of genes associated with glycolysis and alcohol fermentation in 

rice plants (Oryza sativa L.) suggest that the mRNA levels of genes engaged in glycolysis 

and alcohol fermentation may be regulated differently under submerged stress (Umeda, 

1994). The activities of sucrose metabolism enzymes in glycerol-grown suspension cultures 

of sweet orange (Citrus sinensis L Osbeck) show high activities of sucrose phosphat synthase, 

sucrose synthase and invertase (Spot 30: EC 3.2.1.26), and an appreciable accumulation of 

sucrose, reducing sugars and starch in glycerol-grown tissues (Vu et al., 1995). 
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5.3 Role of Nitrogen In Somatic Embryogenesis 
 
 
5.3.1 Effect of the Nitrogen Source on Medium pH 

 

The uptake of nitrate ions by cultured plant cells leads to the extrusion of OH- ions into 

the substrate which thus drifts towards alkalinity, while NH4- uptake results in the 

excretion of H+ ions causing the substrate to become more acidic (Neumann, 1995). The 

final pH of media containing both N03- and NH4- depends on the relative proportion of 

each kind of ion. The presence of both ions provides a partial buffering mechanism for 

culture media that persists until the concentration of either becomes depleted. The intake 

of both forms of nitrogen by plants is adversely affected by the pH changes that the ions 

individually induce: ammonium ion uptake is less efficient in acid solutions, while nitrate 

ion uptake is lowered when the solution tends towards alkalinity (Mengel 1991). Effective 

nitrogen uptake in vitro can therefore depend on a balance between both nitrate and 

ammonium ions. The nitrate ion is not readily absorbed into plant cells from solutions 

which have a pH greater than 7 (Martin and Rose, 1976). Whereas it is usually satisfactory 

to add extra ammonium to a medium in the form of NH4Cl, the use of an equivalent 

amount of (NH4)2S04 can lead to a marked decrease in the pH of the medium during the 

culture period. This is probably because the SO42- ion is less well absorbed than Cl-. Plants 

grown on N03- produce organic acids as a means of neutralizing the excess OH that results 

from N03- assimilation. Smaller amounts of organic acids are produced when NH4- is the 

nitrogen source, so that NO3- grown plants usually have a higher ion content and internal 

osmolarity than NH4- grown plants. In media lacking nitrate, glutamine was superior to 

other amino acids added singly, and ammonium could serve as the sole nitrogen source if 

the proper pH was maintained (Dougall and Verma, 1978). 

The role of nitrogen is connected with the chemical changes in which that specific 

nitrogen form exposes to the culture and its effect on the pH of the culture medium. In 

diammonium sulfate treatments, the pH of the culture is reduced and because of the 

release of OH- in KNO3 treatments the pH of the medium increases and casein 

hydrolysate as nitrogen source acts as a buffer. The buffering capacity of the diammonium 

sulfate and potassium nitrate is within a range of 2. Casein hydrolysate, showed only a 
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narrow difference between its pH and pK values. It is indeed a suitable buffer and it 

stabilizes the pH of the culture significantly. A mixture of three different nitrogen forms in 

the solution had a pH capacity being between the organic and non-organic nitrogen 

containing solution. So the solution makes use of different characteristics of each nitrogen 

form. Diammonium sulfate reduces the pH of the solution, potassium nitrate exerts an 

opposite effect by increasing pH, and finally casein hydrolysate acts as a buffer to stabilize 

the pH of the system. Experiments with petiole culture (B5-) under different pH 

conditions showed that in the induction phase the pH of the solution had a maximum 

fluctuation of one pH range 12 days after the culture. In general the pH tended to reach a 

value around 6. After subculture in an auxin-free medium, the pH value decreased for the 

next two weeks. This can be a result of the release of H+ (protons) in exchange for readily 

available and absorbable cations like Ca and K. After 14 days, however, the pH of the 

culture solution rose so that 30 days after sub-culture in an auxin-free medium the pH of 

the nutrient solution tended to again reach 6 on the pH scale. Considering the realization 

of somatic embryogenesis on the base of the occurrence time and the number of 

embryonal bodies, cultures with higher adjusted pH values showed a better performance. 

In one experiment, petioles were incubated in stock solutions with an initial pH of 4.5, 5.0, 

5.8, 6.5 and 7.2. Petioles with a pH of 4.5 failed to produce any embryo. Petioles cultured 

in stock solution with a pH of 5.0 showed restricted embryogenesis. Other treatments with 

a higher pH went through all stages of realization of somatic embryogenesis and produced 

young plants. 

 

The same experiment was conducted using cell suspension as the source material. The 

increase in the pH of the solution was one pH scale more than that of the petiole culture, 

however, showing the same trend. Treatment with low solution pH failed to give rise to 

advanced stages of embryogenesis. This is evident because the optimum pH of most of the 

enzymes is in the pH range of 6. To find out the role of pH and its relation to the kind of 

nitrogen, three stock solutions with initial pH ranges of 4.2, 5.8 and 7.2 were prepared. 

With a pH of 4.2 there were no sign of realization of somatic embryogenesis regardless of 

the type of nitrogen. With a pH of 5.8 and 7.2, respectively, casein hydrolysate or KNO3 

treatments showed normal embryo development. The development was better under the 

pH of 5.8, indicating that an optimum pH for somatic embryogenesis is around 6. As far as 
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(NH4)2SO4 is concerned it showed a slight improvement below a pH of 7.2, suggesting a 

relation between pH and the occurrence and degree of realization during carrot somatic 

embryogenesis. As a result firstly, a pH readjustment can be forced to the system when the 

pH reducing nature of diammonium sulfate encounters the adjusted pH of 7.2, secondly, 

under a higher pH range plant cells can more readily use nitrogen of diammonium sulfate 

for its vital metabolic activities, growth and development. A parallel experiment conducted 

with different pH ranges showed a similar trend indicating an optimum pH of 5.8 - 6.8 as a 

general rule. The optimum pH range of control B5 medium is between 5.8 and 6.8. Casein 

hydrolysate treatment follows the same trend. In (NH4)2SO4 treatment, only under a high 

pH of 8, the cells divided more rapidly compared to a culture with a lower pH. The vitality 

of the cells was determined by using neutral red. The cells were vital even under a pH of 

4.2. Nitrate treatment showed a retardation trend as the pH reached the scale of 8.0. 

 

In regard to the pH of the suspension solution, as a general rule, diammonium sulfate 

lowers the pH of the solution to 3.5, nitrate by contrast increases it up to around 7.0, and 

casein hydrolysate keeps the pH of the solution nearly constant, around 6.0. Treatments 

with a low concentration of (NH4)2SO4 led to embryo formation. This can be interpreted 

as follows: by decreasing the concentration of the amount of (NH4)2SO4 supplied, the pH 

is less affected. Diammonium treatment decreases the pH to a critical level by stagnating 

physiological and biochemical processes through irreversible damaging and deactivation of 

proton pump. Many higher plants suffer toxic effects when ammonia is the exclusive 

nitrogen source. The toxicity of NH4+ causing low pH is particularly severe (Yan et al., 

1992). According to Felle (1987), Membrane transport, metabolism, and cytoplasmic 

buffer are the main factors involved in pH control. Cytoplasmic pH is not a function of 

external pH, the cell does not react to pH changes caused by week acids or bases, and the 

plasmalemma pump reacts to cytoplasmic pH, but if turned off or stimulated the pH 

change is small. According to him pH is mainly determind by H+ producing and 

consuming processes and pH control is more based on the pH changes produced inside 

the cell than on changes in external pH (Felle, H. 1987).  Kosegarten et al. (1999) suggest 

that under NO3- nutrition an increased apoplastic pH depresses Fe3+ reductase activity and 

in this way influence Fe2+ transport across the plasma membrane negatively, resulting in Fe 

chlorosis. According to him, the significant increase in apoplastic pH of the NO3- 
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treatment might derive from NO3-/proton cotransport. These results were not found in 

NH4+ or NH4 NO3 sole nutrition treatments. 

The question is, which is the dominating factor, the nitrogen form or the pH. It is 

understandable that different nitrogen forms affect the pH of medium differently or a 

specific nitrogen form has a specific pH effect on the medium and it is obvious too that 

pH in itself is important for the induction and realization of somatic embryogenesis and 

embryo development. It seems, however that the pH factor is a “more co-dominant 

factor” than the nitrogen form. 

 

 

5.3.2 IN-VITRO Cell Division and Cell Growth 
 

Nitrogen is a vital constituent of many key biomolecules. Nitrogen, its forms and 

proportion, and pH can influence the cell division, differentiation, growth and develop-

ment of somatic embryos in vitro. Nevertheless, the metabolic aspects and physiological 

and molecular properties of nitrogen metabolism during cell differentiation and morpho-

genesis are not well understood. A number of fundamental questions have still to be dealt 

with: cell differentiation and morphogenic responses and the role of nitrogen in the 

regulation of morphogenesis through the evaluation of the uptake and primary assimilation 

of inorganic nitrogen in plant morphogenesis in vitro and in vivo, the explicit role of certain 

metabolites, such as amino acids and polyamines etc., the contribution of nitrogenous 

metabolites in the modulation of plant growth regulators, and the assessment of the 

current condition of the widely studied tissue culture systems, Daucus carota, Nicotiana 

tabacum and Pinus radiata as model systems for understanding the common principles of 

nitrogen metabolism (Singh, 1995). 

Nitrate and ammonia are the most common inorganic nitrogen compounds used as 

nutrient salts in tissue culture media for in vitro plant cultures (Murashige and Skoog, 1962, 

Mantell and Hugo, 1989, Mordhorst and Lörz, 1993, Niedz, 1994). The pathways for the 

assimilation and utilization of nitrogen from the environment are clear for the in vivo 

growth of plants. On the other hand, information on plant tissues grown in culture is very 

limited. The most widespread inorganic nitrogen form acquired by plants grown in vivo is 

nitrate. Intact plants are generally set to obtain optimal quantities of nitrate when the 



 113

exogenously presented nitrate concentrations fluctuate from 10 µM to 100 mM (Crawford, 

1995; Glass and Siddiqui, 1995; Neumann, 1995 and Mengel, 1991). In plant cells, nitrate 

can either be transformed to nitrite and afterward to ammonia via the enzymes nitrate 

reductase (NR, EC 1.6.6.l) (Crawford, 1995; Mengel, 1991; Srivastava, 1995) and nitrite 

reductase (NiR, EC 1.6.6.4) (Sawhney, 1995) correspondingly, or the nitrate may possibly 

be stored in the vacuoles. Ammonia, produced by these reactions, is further utilized in 

combination with carbon skeletons to produce glutamine and glutamic acid. This reaction 

is catalyzed by glutamine synthetase (GS, EC 6.3.1.2) and glutamate synthase (GOGAT, 

EC 1.4.1.14) (Lam et al., 1995, Mengel, 1991, Neumann, 1995, Singh,  1995). A minute 

fraction may be utilized via glutamate dehydrogenase (GDR, E.C.l.4.1.24) (Bhadula and 

Shargool, 1995, Singh, 1995). Once it has entered into the organic cycle, nitrogen can be 

builtin new amino acids, amides, proteins, nucleic acids, chlorophylls, alkaloids, polyarni-

nes, vitamins, plant growth regulators etc. Singh et al., (1995) have proposed that nitrate 

may possibly function as a signal molecule of plant growth via amplified gene expression 

for enzymes in charge of the uptake and utilization of nitrate e.g. NR, NiR, GS, and 

GOGAT (Crawford and Arst, 1993, Hoff et al., 1994, Crawford, 1995). Despite the fact 

that nitrate and ammonium salts have been universally used as nutrients in tissue culture 

media, numerous reports specify that reduced nitrogen forms, particularly amides and 

amino acids, e.g. glutamine, glutamic acid, proline and alanine, etc., can improve cell prolif-

eration as well as regeneration in specific genotypes (Neumann, 1995, Jullien et al., 1979, 

Stuart and Strickland, 1984a7 b, Olsen, F. L. 1987, Shetty and Asano, 1991a, b, Shetty et al., 
1992a, b, Gill et al., 1993, Thorpe, 1993, Murthy et al., 1996a, b), but the function of these 

compounds in the induction and expression of morphogenesis is explicit. 

 
 
 
5.3.2.1 Inorganic Nitrogen 
 
The requirement for nutrient salts such as nitrate, ammonium and some forms of reduced 

organic nitrogen in plant cell culture media has long been realized. Many of the early tissue 

culture media contained only nitrate (Gautheret, 1937;White, 1939) and the significance of 

reduced nitrogen forms for an improved growth and regeneration emerged only later 
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(Murashige and Skoog, 1962, White, P. R. 1963, Gamborg et al., 1968). Preece (1995) 

emphasized the inevitability of optimizing both, nutrient requirements and plant growth 

regulators for morphogenic responses. Different forms of nitrogen in the culture media 

alter the endogenous levels of cell metabolites as well as proteins, nucleic acids, plant 

growth regulators (PGRs) and other explicit regulatory molecules (Preece, 1995). This 

nitrogen requirement may or may not be met by both inorganic or organic forms of 

nitrogen, depending on the species and culture conditions (Preece, 1995). The primary 

events of cell division, cell size increase and entry into S-phase of DNA synthesis were 

improved and the rate of cell mortality deceased when Asparagus officinalis mesophyll cells 

were cultured on MS medium with 30 mM L-glutamine as the only nitrogen source (Jullien 

et al., 1979). In this culture system an organic form of nitrogen is most suitable, since 

cultured asparagus cells, suspectfully lack NR activity and consequently are not capable 

using nitrate ions (Jullien et al., 1979). Seelve et al. (1995) have publicized that exogenously 

supplied ammonium improved GS activity, ammonium content and the growth of 

asparagus callus as compared to those with no ammonium addition. However, high 

ammonium supplementation reduced GS activity and the growth of the calli. Furthermore, 

a study of nitrate utilization in tobacco suspension cultured cells during a culture cycle 

indicated that the patterns of utilization of nitrate ions for cell growth and the expression 

of nitrate uptake proteins and reducing enzymes were comparable to those of plant 

seedlings (Heimer and Filner, 1971;Behrend and Mateles, 1975;Deane-Drummond, 

1990;Zhang and Mackown, 1992;Glass and Siddiqui, 1995). 

 

Ammonia and nitrate each can be employed as the only source of nitrogen in cell culture. 

Experiments with tobacco cell culture showed that cells proliferate better in a medium 

containing nitrate as the only nitrogen source, through which there is a marked increase in 

cell dry weight, cell proliferation is higher, and there is an increase in the pH value 

compared with ammonium treatment. This is an indication of lower cell division activity in 

an ammonium treatment; cell development in both treatments was nearly the same 

(Neumann, 1995). The fall in the pH of the culture medium can be an indication that 

ammonium was taken up preferentially to nitrate. An additional factor, which may 

influence nitrogen modulated cell division and growth is the pH of the growth medium. 

Ammonium uptake in suspension cultures of Ipomoea cells (Martin and Rose, 1976), tomato 
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roots (Sheat et al., 1959), maize roots and leaves (Singh et al., 1984) and soybean plants 

(Tolley-Henry and Raper, 1986) was reliant on the pH of the medium. Ammonium uptake 

rates in ammonium partially continuous cultures of carrot were 25% higher when the pH 

of the medium was 4.5 compared to a pH of 5.5 or 6.5 (Steiner and Dougall, 1995). It is 

suggested that this alteration in culture medium pH possibly caused the cells to aggregate 

or disaggregate, which consequently increased the rate of ammonium uptake from the 

medium. In a number of liquid media both forms of inorganic nitrogen are used e.g. MS 

medium, and it seems there is a timely preferential selectivity for the ammonium form of 

nitrogen (Neumann, 1995). 

 
 
 
 
 
5.3.2.2 Organic Nitrogen 

 

 

The influence of reduced organic nitrogen in cell cultures on cell division and cell 

growth is not altogether comprehensive and not always positive. Filner (1966) monitored 

the L forms of alanine, asparagine, aspartic acid, glutamic acid, proline, valine, histidine, 

and leucine, which inhibited cell growth and repressed NR activity in short-term cultiva-

tion of tobacco cells in culture media containing one of these amino acids. As products of 

nitrate assimilation, exogenous and/or endogenous ammonium and amino acids accumu-

lated and in general reduced NR activity in plants; on the other hand, an ammonium-

induced NR activity has been made known in some plants inclucing tissue culture and cell 

suspension cultures (Srivastava, 1992, 1995). Hence, amino acids can adjust the nitrogen 

utilization of in-vitro cultures by regulating primary nitrogen assimilation. Concurrently, 

many amino acids can be readily transformed into other amino acids and integrated into 

proteins in the cell culture (Dougall, 1965, 1966;Thorpe, 1993). 
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5.3.3 Somatic Embryogenesis 
 
 
 
5.3.3.1 Inorganic Nitrogen 
 
 

Cellular totipotency and flexibility of differentiation programs leads to potential differ-

entiation of somatic cells to the specific types of regenerants, i.e., shoots, roots, microtuber 

or somatic embryos, in defined culture conditions (Singh, 1995). Equilibrium of nitroge-

nous compounds in addition to phytohormones, predominantly auxin and cytokinins, in 

the media and in the tissues or cell masses is essential for morphogenesis to take place 

(Olsen, 1987, Thorpe, 1980, 1982, 1983). The amount and form of the supplemented 

nitrogen in the culture media influences the growth and metabolic activity of the cultured 

cells as well as their morphology and regenerative potentials. Reprogramming of the entire 

gene expression pattern with explicit signals for genes is necessary to initiate the regen-

eration process. Dudits et al. (1995) studied the contemporary molecular understanding of 

the procedures concerned with the induction of regeneration and indicated the fundamen-

tal role of hormones or stress-induced activation of signal transduction systems which may 

modify DNA structure transcription, or induce the events that lead to the formation of 

either dedifferentiated callus tissues or somatic embryos. Nitrogenous compounds may be 

involved in this process either as carriers, catalysts, transporters or other regulatory 

molecules (Dudits et al., 1995). 

 

 It is necessary to look back at the first reports dealing with two fundamental dogma 

of somatic embryogenesis since the earliest successes were achieved in media 

supplemented with coconut milk or coconut water. Attention was focused on the role of 

complex, naturally occurring liquid endosperms that normally bathe zygotic embryos in 

nourishing young somatic embryos (Steward and Shantz, 1959;Steward et al., 1969). 

Subsequent investigations showed that both the induction of embryogenic growth and the 

promotion of maturation in carrot cultures could be achieved in the totally defined media 

in the absence of CW (e.g. Kato and Takeuchi, 1963). However, it was during this early 



 117

period of research that the basic requirements for somatic embryogenesis in carrot were 

demonstrated:  

 

(1) An auxin or auxin-like substance was critical for embryo initiation, and the lowering of 

the auxin concentration or its complete absence fostered embryo maturation (Halperin and 

Wetherell, 1964;Halperin, 1966;Steward et al., 1967).  

(2) Reduced nitrogen was reported to be a prerequisite and of outmost importance for 

both initiation (Halperin and Wetherell, 1964b;Halperin, 1966) and maturation of somatic 

embryogenesis (Ammirato and Steward, 1971) 

 

The initial observations of somatic embryos by Steward and Reinert were with cultures 

containing complex media, including CW and casein hydrolysate, both of which serve as 

sources of reduced nitrogen. The specific requirement for ammonium in carrot somatic 

embryogenesis was reported by Halperin and Wetherell (1964b). Most culture media used 

for somatic embryogenesis contain ammonium nitrate (Ammirato, 1984). The source of 

reduced nitrogen may vary and is a complex agenda (e.g., CW). Mixtures of amino acids 

(Kato and Takeuchi, 1966) and single amino acids have all been employed (Wetherell and 

Dougall, 1976). Many studies have claimed that inorganic nitrogen in the form of 

ammonium is required for the initiation of embryogenesis in carrot cell cultures, stating 

that nitrate alone is insufficient, but that supplementation of the culture medium with 

ammonium chloride induced embryo formation (Halperin and Wetherell, 1965; Wetherell 

and Dougall, 1976). Some claimed that the content of reduced nitrogen determines the 

nature of the meristems (Halperin 1966;Jones 1974). 

 

In the present study using KNO3, an oxidized nitrogen form, during the realization phase 

as the sole source of nitrogen, contrary to the hypothesis that “somatic embryogenesis 

needs necessarily a reduced form of nitrogen” (Halperin et al., 1965;Kamada et al., 1979, 

1984b, Wetherell et al., 1976), the globular stage was formed already 5-6 days after 

initiation of the culture and 10-12 days thereafter, heart structures appeared. Torpedoes 

emerged 13-16 days later and led to the formation of plantlets 15-18 days from the 

beginning of the subculture in auxin-free medium. To verify this phenomenon, different 

parallel experiments were conducted using modified and original Gamborg B5 media 
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differing in their nitrogen form and using different cell material. An independent 

experiment was conducted in our institute in which the same results were obtained. So it is 

clear by now, that the realization of somatic embryogenesis can be fostered by using only 

oxidized form of nitrogen. The assimilation of ammonium is against the exchange of H+ 

ions in the culture medium. This aspect made it interesting to investigate how important 

the pH value is and what role the pH plays in the process of ammonium assimilation and 

somatic embryogenesis. In the meantime, one must not forget the competitive process of 

ammonium against other cations present in the nutrition solution. In some liquid solutions 

both forms of inorganic nitrogen are used e.g. in the MS medium. In this medium it seems 

there is a timely preferential selectivity for the ammonium form of nitrogen. Later on, cells 

use nitrate for performing their metabolic activities (Neumann, 1995). Ammonium is a 

reduced form of nitrogen, hence it can be readily used for the synthesis of amino acids. 

Nitrate, as an oxidized form of nitrogen, must first be reduced. This process needs some 

energy source from the metabolism of the cell.  

Adequate nitrogen in the medium is important for somatic embryogenesis as no embryos 

are produced from explants cultured with very low levels of nitrogen or inadequate forms 

of nitrogen in the medium (Reinert et al., 1967;Tazawa and Reinert, 1969;Reinert and 

Tazawa, 1969;Wetherell and Dougall, 1976;Nomura and Komamine, 1995). Using 15N 

NMR analysis, Thorpe (1993) confirmed that ammonium is the preferred source of 

nitrogen in carrot and white spruce embryogenic tissues, as it is taken up from the medium 

early and utilized more rapidly than nitrate. Dougall and Verma (1978) reported that carrot 

suspension cultures could grow and produce somatic embryos in the presence of ammo-

nium as the only nitrogen source, if the pH of the medium is controlled by permanent 

titration. According to Kamada and Harada (1984 a, b) the induction phase of somatic 

embryogenesis in carrot requires no nitrogenous compounds, if the appropriate level of 

2,4-D exists, nevertheless, reduced nitrogen is required for advanced embryo development. 

Low levels of ammonium (1-5 mM) as the single nitrogen source and low pH have been 

reported to induce somatic embryogenesis in carrot, even in the absence of the auxin 

(Smith and Krikorian, 1990, Merkle et al., 1995). 

It seems that if programming of somatic cells is induced just once by the induction factor, 

the repetitive cycles of embryogenesis follow the same programs and looping. Tazawa and 

Reinert (1969) reported that the existence of ammonium in the medium is not indispensa-
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ble for embryo formation in vitro, but a certain level of intracellular ammonium is a must 

for this process. A threshold level of tissue ammonium and its correlation to the embryo-

genic response of the cells in all the cultures, however, were not apparent (Singh, 1995). 

Mordhorst and Lörz (1993) reported that for the duration of embryogenesis and the 

development of isolated barley microspores, the level of total nitrogen content in the 

medium, the nitrate : ammonium ratio, and the ratio of inorganic : organic nitrogen were 

not correlated to the frequency of initial divisions, and had only moderate effects on 

planting efficiency, although they had significant effects on embryogenesis and plant 

regeneration. 

 

When potassium nitrate at the level corresponding to MS nitrate, or ammonium sulfate at 

the level corresponding to MS ammonium or glutamine (10 mM), was added in the culture 

medium as the single nitrogen source, the somatic embryos produced were at the 

cotyledonary notch of peanut seed cultures in vitro, even if they were considerably fewer in 

number compared with cultures raised in standard MS nitrogen having all nitrogen forms 

(Singh, 1995). However, glutamic acid (10 mM) as the only nitrogen source in the medium 

was found to cover the requirement for nitrogen (Singh, 1995). Khanna and Raina (1997) 

have in recent times publicized that the nitrogen content of the callusing medium and the 

composition of NO3- and NH4+ nitrogen considerably influence the shoot regeneration 

from the calli in Basmati rice cultivars. 

 

The differences observed in diverse studies may be linked to genotypic dissimilarity, 

dissimilarity in the source tissues, and the interaction of nitrogen with other supplementary 

components of the media and to the endogenous condition of various metabolites and 

plant growth regulators. Numerous other aspects may be involved in nitrogen-mediated 

regeneration inducing recycling and metabolism of nitrogen compounds in the plant cells 

during the culture. 

 The reasoning, interpretations and reports by others on why nitrate is not the preferential 

source of nitrogen for cell growth and regeneration in in-vitro cultures remain unresolved, 

rather left over, particularly in view of its utilization in vivo (Crawford, 1995). Various 

reports dispute the possibility that in-vitro cultured cells do not have adequate physiological 

resources to promote nitrate uptake, transport and assimilation during the early culture 
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phase. When a whole seedling system was used to investigate the effect of nitrate on 

regeneration, the reaction induced differed from that observed for the explants culture 

systems (Wetherell and Dougall, 1976;Singh, 1995). This suggests that the failure of the 

cellular ability to take up and assimilate the nitrate may be related to the physical isolation 

of the explants and distorted growth of the root system in the presence of high levels of 

cytokinins. In carrot and white spruce embryogenic tissues, the assimilation of inorganic 

nitrogen into glutamine, glutamate and alanine during embryo development, and the 

conversion into arginine and aliphatic amines are confirmed using 15N tracer techniques 

(Thorpe, 1993).  

Low activity of NR in the early stages of carrot somatic embryogenesis has been associated 

with poor embryogenic potential in the absence of reduced nitrogen (Kamada and Harada, 

1984a). The activity of the ammonia assimilating enzyme glutamine synthetase was also 

reduced during somatic embryogenesis in carrot, following an initial activation (Higashi et 

al., 1996). It is thus probable that exogenously supplied amino nitrogen in the form of 

glutamine and/or other amino acids may be crucial to provide the adequate nitrogen for 

the synthesis of metabolites for embryogenesis. It is perceptible that during the embryo de-

velopment the assimilation of nitrogen occurred via the GS-GOGAT cycle of ammonia 

assimilation, causing its incorporation into ornithine and eventually polyamines (Singh, 

1995). 

 

 
5.3.3.2 Organic Nitrogen 

 

There is increasing evidence of the efficacy of the supplemented amino compounds in the 

culture medium in the presence or absence of nutrient nitrogen salts. Many amino acids are 

efficient in improving somatic embryogenesis at different stages of development and 

transition. It seems that young embryos do not have the vigorous enzyme systems to 

assimilate nitrate and ammonium. Furthermore, the addition of certain amino compounds 

including glutamine, glutamic acid and alanine, improve the production, development and 

transition rate of somatic embryos. 

The casein hydrolysate in our treatment produced the highest number of embryonal 

bodies, but the formation of plantlets failed in this treatment. This phenomenon has its 
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own importance, because in this way a synchronized culture will be established which 

proceeds only till the late torpedo stage, but no further. It is comparable to the dormant 

state of a zygotic embryo. The existing hypothesis proclaiming that all torpedoes will be 

automatically transferred to plantlets must be revised subsequently. The biochemical 

pathway behind the synchronal development would make us able to understand more 

about the “induced somatic dormancy” which, most likely, is not too far away from zygotic 

dormancy. 

The synchronized development up to the torpedo stage in the casein hydrolysate treatment 

opens ways to produce “artificial seeds” by automation of such process, rough calculation 

indicates yielding up to approximately 15.7 million torpedoes of greater than 800 µ in size 

in a 1000 lit bioreactor in a period of just 90 days (unpublished, Institute for Plant 

Nutrition, Department of Tissue Culture JLU, Giessen).. 

The application of the principles of plant cell division and regeneration to practical plant 

propagation is the result of continuous studies in many laboratories worldwide, on the 

standardisation of explants sources, media composition and physical state, environmental 

conditions and adaptation of in vitro plants. Particularly important are the studies on the 

molecular causes of organogenesis and somatic embryogenesis. However, further practical 

applications of micro propagation, which is also commercially viable, depends on reducing 

the production costs such that it can compete with seed production or traditional 

vegetative propagation methods (e.g., cuttings, tubers and bulbs, grafting etc). There is a 

need for the development of an automated system for mass micro propagation of 

commercially important crop plants. A bioreactor system could be used for precise control 

over the physiochemical environment at each stage of the process. Following embryo 

development, an automated imaging system could determine embryo quality and then the 

embryos could be coated with a polymer for storage creating a synthetic seed. This would 

allow for the propagation of elite clones and make more efficient use of the limited natural 

resources.  

Techniques that have the potential to further increase the efficiency of micro propagation, 

but still need further improvements, include: simplified large scale bioreactors, cheaper 

automatization facilities, efficient somatic embryogenesis and synthetic seed production, 

greater utilisation of the autotrophic growth potential of cultures, and good repeatability 
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and quality assurance of the micropropagated plants. Plant biotechnology includes the 

technique tissue culture to clonally produce large numbers of identical individuals at 

minimal cost. Somatic embryogenesis is the best method for high frequency somatic 

embryo production in most of the Umbelliferae members (Stephen and Jayabalan 1999). 

Somatic embryogenesis as a propagation system is still experimental and is not used 

commonly to propagate commercially important species. However, the potential for clonal 

propagation of traditionally seed propagated plants like forestry species and vegetables are 

enormous. This technology will probably require synthetic seeds to deliver these plants to 

the field (Brown, D.C.W. 1994). Artificial seed is a seed, which has been manufactured 

rather than naturally formed. Artificial seeds usually comprise plant-derived cells such as a 

somatic embryo encapsulated in an artificial seed coating. An artificial seed will usually give 

rise to a clonal plant i.e. one, which is genetically identical to the plant from which it has 

been derived (Bouton, J. 1998). The concept of artificial seed, also commonly referred to 

as synthetic seed or encapsulated embryos is potentially more efficient method compared 

to conventional micropropagation. An embryo formed from a somatic cell and not from 

gametes is genetically identical to the plant from which it has been derived, unlike a seed, 

which inherits genes from both the male parent via pollen and female parent via ovule. 

Somatic embryos may be used for clonal propagation and in the formation of artificial 

seeds of woody plants. Synthetic seed technology can capture the genetic superiority of 

plants that are selected for tissue culturing. Only vigorous, superior ecotypes will be 

selected for culture. Selection of superior plants for culture increases the likelihood that 

synthetic seed will grow into superior plants. This is an advantage over the collection and 

planting of seeds from natural populations, because at least some of those seeds will be 

genetically defective or sterile. Synthetic seeds offer an advantage over commercial seed 

selection and cultivar development, which generally takes from 10 to 20 years. In contrast, 

synthetic seeds are produced within a few years. Another benefit of this technique is that 

one will, at the very least, have protocols for micropropagating superior ecotypes of these 

plants, which could result in rapid production of large numbers of seedlings available for 

direct transplanting or for use in commercial seed orchards (Bouton, J. 1998). These 

synthetic seeds are essentially germinated embryos that are enclosed in a gel-like substance 

that contains fertilizers, fungicides and insecticides. These seeds have the advantage of 

breaking their seed coats almost immediately without the worry of uncertain climactic 
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conditions. It would dramatically reduce the need for fertilizers, pesticides and herbicides. 

The first schemes of direct fluid drilling of somatic embryos, developed into techniques of 

encapsulating embryos in hydrated coatings and, recently, into the idea of drying in vitro-

derived embryos. The next stage of technique under development would be the develop-

ment of an effective coating to provide protection during storage and rehydration and the 

improvement in bioreactor production of embryos (Stephen, R. and Jayabalan, N. 1999). 

The paradigm that must be pursued in research is a dry somatic embryo with a synthetic 

endosperm, which would contain additives such as protein or lipid reserves, fungicides 

and/or Rhizobium, all of which would be protected with a synthetic coating to control 

dehydration and protect against physical damage during handling. An automated produc-

tion of a synthetic seed system for genetically improved crops for an accurate evaluation of 

the vigor of seed to evaluate quickly and accurately dormant and hard seed, accurately 

predict germination of seed, rapid detection and effective control of pathogens that are 

seed borne, treating seed internally and externally with fungicides and insecticides for more 

optimum plant populations and higher yield, substitution of bio-engineered organisms for 

chemicals to control seed and soil borne pathogens, verification of the genetic purity of 

your breeding lines and varieties prior to distribution and planting, protection of proprie-

tary products from infringement by use of genetic markers, seed coating to promote 

precision planting and eliminate thinning and the potential field performance of the seed 

and its longevity. 

The maturation phase is the period of embryo development, cell division and histo-

differentiation, in which cell expansion and reserve deposition occurs (Verhagen and 

Wann, 1989). A wide range of diverse media containing various forms and levels of 

nitrogen and combinations of inorganic and organic nitrogen have been shown to 

influence embryo development and maturation. It may be concluded, here, that nitrogen 

has a specific function in the development and maturation of somatic embryos, and in 

addition to an adequate amount of the inorganic nitrogen forms nitrate and ammonium, 

and certain amino acids, especially glutamine, proline, alanine and serine, etc., can improve 

embryo maturation in a defined time phase. Consequently a better embryo conversion rate 

can be achieved. 
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7 APPENDICES 
 



Appendix A: Histological Examination During Induction Phase of Somatic Embryogenesis in Carrot 
Petiole Cultures.  

 
 

I

Fig 1. Section of t0 carrot petiole explant showing embryogenic, rhizogenic and caulogenic areas 
(Schäfer et al., 1988). 

Fig 2.  Section of t7 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin showing rhizogenic meristem (arrow). 
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Fig 3. Section of t7 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin showing rhizogenic meristem. 
 
 
 
 
 
 

 
 
Fig 4. Section of t14 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin showing rhizogenic meristems. 
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Fig 5. Section of t14 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin showing dividing embryogenic cells (arrows). 
 
 
 
 
 
 
 
 

 
Fig 6. Section of t21 carrot petiole explant during realization phase cultured in a medium with out auxin 
2,4-D (B5-) stained with hematoxylin showing embryogenic (A), rhizogenic (B)  meristem and globular 
stage (C). 
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Fig 7. Section of t0 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) labelled with 14C-Leucine. The cell membrane is labelled with 14C-Leucine suggesting a 
possible assimilation of 14C-Leucine by membrane-bound-proteins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix A: Histological Examination During Induction Phase of Somatic Embryogenesis in Carrot 
Petiole Cultures.  

 
 

V

 
 
Fig 8. Section of t7 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) labelled with 14C-Leucine suggesting preferential assimilation of 14C-Leucine. 
 
 
 
 
 

 
Fig 9. Section of t7 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin and labelled with 14C-Leucine suggesting preferential 
assimilation of 14C-Leucine in comparison to only labeled sample in fig, 8. 
 



Appendix A: Histological Examination During Induction Phase of Somatic Embryogenesis in Carrot 
Petiole Cultures.  

 
 

VI 

 
 

 
Fig 10. Section of t14 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) labelled with 14C-Leucine suggesting preferential assimilation of 14C-Leucine. 
 
 
 
 
 

 
 
Fig 11. Section of t14 carrot petiole explant during induction phase cultured in an auxin-containing 
medium (B5+) stained with hematoxylin and labelled with 14C-Leucine suggesting preferential 
assimilation of 14C-Leucine in comparison to only labeled sample in fig, 10. 



Appendix B: 14C-Leucine Absorption and Distribution of Protein Spots during the Induction Phase.  
 

 

I

 
 
Table 1. Fresh weight (FW), weight of acetone powder (AP), protein concentration and specific activity 
of soluble protein after application of 14C-leucine in carrot petiole explants after 5 hours (t0), 7 days (t7) 
and 14 days (t14) culture in an auxin-containing media (modified B5 with 0.5 ppm 2,4-D). Adapted and 
extended  from Grieb, 1992. 
 
 t0 t7 t14 
    
FW mg/10 explants 41 113 256 
AP % 4.48 10.67 11.44 
AP : FW 1 : 22.4 1 : 9.3 1 : 8.6 
    
µg soluble protein/g FW 108.76 415.06 475.65 
µg soluble protein/100 mg AP 242.78 389.36 415.58 
    
dpm . 104 / g FW  13.99 89.23 69.87 
dpm . 104/100 mg AP 31.48 83.21 61.02 
dpm . 104/100 g protein 13.06 21.42 14.67 
 
 
 
 
 
 
Table 2.  Distribution of Coomassie brilliant blue R-250 stained and 14C-leucine labelled 2-DE of protein 
spots in a 5 hour (t0), 7 day (t7) and 14 day (t14) old carrot petiole culture (Daucus carota L. var Rotin) in 
an auxin-containing media (modified B5 with 0.5 ppm 2,4-D). Adapted and extended from Grieb, 1992. 
 
 t0 t7 t14 
    
Protein spots present in a particular time period 91 250 256 
    
Protein spots present only in that very particular 
time period 

13 6 17 

    
Protein spots present in all time periods (House 
Keeping Proteins) 

71 71 71 

    
Protein spots present  in a time period but absent 
in the other time periods 

13 174 17 

    
Protein spots stained only with CBB 12 

(13.2 %) 
35 

(14.0 %) 
54 

(21.0 %) 
    
Protein spots stained with CBB and labelled with 
14C-leucine 

25 
(27.5 %) 

122 
(48.8 %) 

134 
(52.5 %) 

    
Protein spots labelled only with 14C-leucine 54 

(59.3 %) 
93 

(37.2 %) 
68 

(26.5 %) 



 

 

 



 

 

 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

I

1.  – – ¢ – ¢ – 6.25 112.65 
2.    ¢ l ¢ l 6.20 76.88 
3.  – – ¢ l ¢ l 5.75 77.21 
4.  – – ¢ l ¢ - 6.50 68.28 
5.  – – ¢ – ¢ – 6.40 68.28 
6.  – – ¢ l – – 5.94 76.65 
7.  – – ¢ – ¢ l 5.80 70.50 
8.  – l ¢ l ¢ – 5.65 68.28 
9.  – l ¢ l – l 5.10 76.88 
10.  – – ¢ l ¢ – 5.05 69.75 
11.  – l – l – l 4.96 75.22 
12.  – – – l – l 4.80 72.03 
13.  – – – – ¢ – 4.95 66.16 
14.  – – – l – l 4.90 61.55 
15.  – – – l – – 4.80 67.16 
16.  – – ¢ l ¢ l 5.05 57.62 
17.  – – ¢ l ¢ – 5.20 57.62 
18.  – – – l – – 5.20 63.33 
19.  – – – l – l 5.60 58.54 
20.  – – – l – l 5.40 61.55 
21.  – – ¢ l ¢ l 5.70 64.13 
22.  – – ¢ l ¢ l 5.70 60.93 
23.  – – ¢ l ¢ l 6.10 59.72 
24.  – – ¢ – ¢ – 6.20 58.31 
25.  – – ¢ – ¢ l 6.40 60.08 
26.  – – ¢ – ¢ – 6.50 62.18 
27.  – – ¢ – ¢ – 6.75 63.47 
28.  – – ¢ – ¢ – 6.90 63.47 
29.  – – ¢ – ¢ – 7.05 63.47 
30.  – – – l – l 6.95 66.79 
31.  – – – l – l 7.25 57.40 
32.  – – – l – l 7.20 54.69 
33.  – – – l – l 7.10 54.48 
34.  – – – l ¢ l 7.10 57.40 
35.  – – – l – l 7.10 60.32 
36.  – – – l – l 6.95 60.08 
37.  – – ¢ l ¢ l 6.95 57.62 
38.  – – – l – l 6.95 55.22 
39.  – – – l – l 6.70 55.22 
40.  – – – l – l 6.70 57.62 
41.  – – – l – l 6.35 56.07 
42.  – – – l – l 6.25 55.75 
43.  – – ¢ l ¢ – 6.10 56.84 
44.  ¢ – ¢ – – l 5.75 53.67 
45.  ¢ – ¢ – ¢ – 6.05 54.18 
46.  – – ¢ l ¢ l 6.20 52.87 
47.  – – ¢ l ¢ l 6.35 52.48 
48.  – – ¢ l ¢ l 6.65 52.19 
49.  – – ¢ l ¢ l 6.90 52.19 
50.  – – ¢ l ¢ l 6.85 50.34 
51.  – – ¢ – ¢ – 7.10 50.79 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

II

52.  – – ¢ – ¢ – 7.25 50.79 
53.  – – ¢ – ¢ – 7.45 50.79 
54.  – l – l – l 5.60 50.34 
55.  – l – l – l 5.50 49.89 
56.  – – – l – l 5.40 49.98 
57.  – – ¢ – ¢ – 6.00 44.06 
58.  – – ¢ l ¢ – 6.70 48.60 
59.  – – ¢ l ¢ – 6.85 47.37 
60.  – – ¢ l ¢ – 7.00 47.37 
61.  – – ¢ – – – 6.83 53.63 
62.  – – ¢ l – l 7.60 47.78 
63.  – – – l – l 7.75 48.60 
64.  – – – l – l 7.90 48.18 
65.  – – – l ¢ l 7.40 43.39 
66.  – – – l – l 7.20 43.72 
67.  – – – l – l 7.05 43.72 
68.  – – – l – l 7.00 44.06 
69.  – – ¢ l ¢ l 6.85 44.40 
70.  – – ¢ l ¢ l 6.65 44.75 
71.  – – ¢ – ¢ – 6.40 44.75 
72.  – – ¢ l ¢ l 6.20 42.75 
73.  ¢ – ¢ – ¢ l 5.55 43.72 
74.  – – – – ¢ – 5.35 43.39 
75.  – – ¢ – ¢ – 4.95 44.06 
76.  – – – – ¢ – 4.80 42.13 
77.  – – ¢ – ¢ – 4.90 41.54 
78.  ¢ – – – – – 5.58 46.90 
79.  – – ¢ – ¢ – 5.70 41.54 
80.  – – ¢ – ¢ l 5.95 40.97 
81.  ¢ – ¢ – ¢ – 6.40 40.15 
82.  – – – l ¢ l 6.85 40.15 
83.  – – ¢ l ¢ l 6.95 39.63 
84.  – – ¢ l ¢ l 7.15 40.69 
85.  – – – – ¢ l 7.80 40.15 
86.  – – – l ¢ l 7.80 42.13 
87.  – – – – ¢ l 7.95 40.97 
88.  – – – – ¢ l 8.00 39.13 
89.  – – ¢ – ¢ – 6.90 38.89 
90.  – – ¢ – ¢ – 6.75 38.65 
91.  – – ¢ l ¢ l 7.75 36.17 
92.  – – ¢ l ¢ l 7.40 36.73 
93.  – l ¢ l ¢ l 7.25 37.13 
94.  – l ¢ l ¢ l 7.15 37.33 
95.  – l ¢ l ¢ l 7.00 37.54 
96.  – l ¢ l ¢ l 6.90 37.97 
97.  – – – – ¢ – 7.20 35.81 
98.  – – ¢ l ¢ l 7.10 36.35 
99.  – – – l – l 7.00 36.73 
100. – – – l – l 6.90 36.73 
101. – – ¢ l – l 6.55 36.73 
102. ¢ – ¢ l ¢ l 6.30 37.75 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

III

103. – – ¢ l ¢ l 6.15 38.19 
104. ¢ – ¢ l ¢ l 6.00 39.13 
105. ¢ l ¢ l ¢ l 5.75 39.38 
106. – – – – ¢ – 4.50 37.33 
107. – – – l – – 5.10 39.61 
108. – – – l – l 5.45 36.54 
109. ¢ – ¢ – ¢ – 5.70 37.54 
110. – – ¢ l ¢ l 5.95 37.13 
111. – l – l – l 6.25 35.81 
112. – – ¢ l ¢ l 7.10 34.99 
113. – – – l ¢ l 7.45 34.54 
114. – – – l ¢ l 7.60 34.40 
115. – – – l ¢ l 7.80 34.26 
116. – – ¢ l ¢ l 8.00 34.12 
117. – – – – – l 7.85 35.31 
118. – – – – – l 8.05 35.21 
119. – – – – – l 8.15 32.42 
120. – l ¢ l ¢ l 7.80 32.72 
121. – – ¢ l ¢ l 7.55 32.72 
122. – – ¢ l ¢ l 7.30 32.97 
123. – – ¢ l ¢ l 7.10 33.73 
124. – – ¢ l ¢ l 7.05 34.26 
125. – – ¢ l ¢ l 6.90 34.69 
126. – – ¢ l ¢ l 7.00 33.73 
127. – – ¢ l ¢ l 6.95 32.62 
128. – – ¢ l ¢ l 6.85 33.14 
129. – – ¢ l ¢ l 6.85 33.99 
130. – – – – ¢ l 6.55 34.12 
131. – – ¢ l ¢ ¢  6.55 33.49 
132. – – – l ¢ – 6.55 32.62 
133. – – – l ¢ l 6.25 34.12 
134. ¢ l ¢ l ¢ l 6.10 35.15 
135. – – – l – l 6.10 36.17 
136. – – – l – l 5.90 34.84 
137. – – – l – l 5.75 34.69 
138. – – – l – l 5.60 35.47 
139. – – – l – – 5.12 36.61 
140. – – ¢ – ¢ – 4.60 33.73 
141. – – ¢ – ¢ – 4.60 33.25 
142. – – – – ¢ – 4.50 33.30 
143. – – ¢ – ¢ – 4.50 32.82 
144. – – – – ¢ – 4.20 34.69 
145. – – – – ¢ – 4.20 33.99 
146. – – – – ¢ – 4.20 33.37 
147. – – ¢ – ¢ – 4.15 33.03 
148. – – – l – l 5.50 35.21 
149. – l ¢ – ¢ l 5.75 33.73 
150. – – ¢ l ¢ l 6.00 33.73 
151. – – ¢ l ¢ l 6.25 33.25 
152. – – ¢ l ¢ l 6.25 32.46 
153. – – ¢ l ¢ l 6.20 31.95 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

IV

154. – l ¢ l ¢ l 6.10 32.42 
155. – l – – – – 5.85 36.04 
156. – l – l – l 5.65 32.06 
157. – l – l ¢ l 5.35 32.15 
158. – – – l – l 4.90 31.86 
159. – – – l – l 7.05 31.85 
160. – – – l – l 6.70 31.51 
161. – – – l ¢ l 7.55 31.71 
162. – – ¢ l ¢ l 7.80 31.51 
163. – – – l ¢ l 7.45 30.92 
164. – – ¢ l ¢ – 7.20 30.89 
165. – l ¢ l ¢ l 6.25 30.86 
166. ¢ l ¢ l ¢ l 6.10 30.98 
167. – l ¢ l ¢ l 5.95 31.17 
168. – l ¢ l ¢ l 5.70 31.55 
169. – l ¢ l ¢ l 5.40 30.92 
170. – l ¢ l ¢ l 5.40 30.47 
171. ¢ l ¢ l ¢ l 5.75 30.86 
172. – l ¢ l ¢ l 6.05 30.42 
173. – – ¢ l ¢ l 6.25 30.32 
174. – – ¢ l ¢ l 6.30 29.94 
175. ¢ l ¢ l ¢ l 6.85 30.42 
176. ¢ l ¢ l ¢ l 6.80 30.22 
177. – – ¢ l ¢ l 7.35 30.42 
178. – – ¢ l ¢ l 7.50 30.37 
179. – – ¢ l ¢ l 7.65 29.84 
180. – – ¢ l ¢ l 7.45 29.85 
181. – l ¢ l ¢ l 7.35 29.61 
182. – – ¢ l ¢ l 7.25 29.76 
183. – – ¢ l ¢ l 6.95 29.11 
184. – – ¢ l ¢ l 7.00 29.38 
185. – – ¢ l ¢ l 7.00 29.76 
186. – – ¢ l ¢ l 6.60 29.90 
187. ¢ l – l – l 6.40 29.79 
188. – – ¢ l ¢ l 5.90 30.13 
189. – – ¢ l ¢ l 5.80 29.81 
190. ¢ l ¢ l ¢ l 5.65 29.85 
191. – – – l – l 5.45 29.79 
192. – – – – – l 5.30 30.13 
193. – – – l – l 5.30 29.72 
194. – – – l ¢ l 5.00 29.720 
195. ¢ – – l – – 5.10 27.81 
196. ¢ – – l ¢ – 5.45 29.54 
197. ¢ l – l – – 5.42 28.56 
198. ¢ – – l ¢ l 5.55 29.23 
199. – – ¢ l ¢ l 5.60 29.34 
200. – l ¢ l ¢ l 5.95 29.76 
201. – l ¢ l ¢ l 6.05 29.63 
202. – l ¢ l ¢ l 6.15 29.60 
203. – l ¢ l ¢ l 6.10 29.30 
204. – – – l ¢ l 6.25 29.21 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

V

205. – – – l – – 6.73 27.71 
206. – – ¢ l ¢ – 7.10 29.56 
207. ¢ – ¢ l ¢ l 7.00 29.04 
208. – – ¢ l ¢ l 7.25 28.64 
209. – – ¢ l – l 7.10 29.04 
210. – – – l – – 7.35 27.88 
211. – l ¢ l ¢ l 7.50 28.92 
212. – l ¢ l ¢ l 7.75 28.87 
213. – – ¢ – ¢ – 8.20 28.48 
214. – – ¢ – ¢ – 8.00 28.33 
215. – l – l ¢ l 7.75 28.27 
216. – – ¢ l ¢ l 7.50 28.31 
217. – l – l – l 7.15 28.40 
218. ¢ l ¢ l ¢ l 6.95 28.55 
219. – l ¢ l ¢ l 6.30 28.74 
220. – l ¢ l ¢ l 6.10 28.72 
221. – l – – – – 5.90 27.49 
222. – l – l – l 5.55 28.64 
223. – l – l – l 5.15 28.07 
224. ¢ l – l – l 6.55 28.07 
225. ¢ l ¢ l ¢ l 5.80 28.07 
226. ¢ l ¢ l ¢ l 5.95 27.94 
227. – l – – – – 6.18 25.81 
228. – l – – – – 6.30 25.96 
229. ¢ l ¢ l ¢ l 6.25 27.94 
230. – l – l – l 6.60 27.81 
231. – l ¢ l ¢ l 6.95 27.67 
232. – l ¢ l – l 7.10 27.81 
233. – – ¢ l ¢ l 7.50 27.60 
234. – – ¢ l ¢ l 7.80 27.31 
235. – l – – – – 8.18 26.32 
236. – – ¢ l ¢ – 6.45 27.39 
237. – – ¢ – ¢ – 6.50 26.60 
238. – – ¢ l ¢ l 6.25 27.34 
239. – – ¢ l ¢ l 6.25 26.74 
240. ¢ l – – – – 6.16 24.55 
241. – – ¢ l ¢ l 5.90 27.23 
242. – – ¢ l ¢ – 5.75 27.46 
243. – – ¢ l – l 5.50 27.56 
244. – – – l – l 5.45 25.25 
245. ¢ l – l – l 5.90 25.09 
246. – – – l – l 6.30 25.47 
247. – – – l – l 6.95 26.29 
248. – l ¢ l ¢ l 7.10 25.18 
249. – – ¢ l ¢ l 7.70 25.63 
250. – – ¢ – ¢ – 7.70 25.14 
251. ¢ l – l – – 6.88 21.41 
252. ¢ l – – – – 7.04 20.13 
253. – – – l – l 6.55 24.02 
254. – – – l ¢ l 6.20 24.10 
255. – – – l – l 6.20 21.85 



Appendix E: List of Protein Spots during Different Induction Periods in an Auxin-Containing Carro t 
Petiole Culture. Adapted and extended  from Grieb, 1992. 

Spot t0 t7 t14 pI MW (KD) 
 

Protein spots appeared on historadioautograms at t0, t7 and t14 of 
carrot petiole culture explants. (– no spot at that stage, ¢ stained 
with CBB, l labelled with 14C-leucine). 

VI

256. – – ¢ l ¢ l 7.10 21.44 
257. – l – l – l 6.05 19.02 
258. – l – l – l 5.85 19.10 
259. – l ¢ l ¢ l 5.40 19.70 
260. – l – l – l 5.20 19.42 
261. – l – – – – 5.21 23.29 
262. ¢ l – – ¢ – 4.30 18.20 
263. ¢ – – – – – 4.68 18.55 
264. ¢ l ¢ l ¢ l 5.45 13.99 
265. ¢ l ¢ l ¢ l 5.65 13.99 
266. – – – l ¢ l 5.80 14.15 
267. – l ¢ l ¢ l 6.25 17.64 
268. – l ¢ l ¢ l 6.30 16.43 
269. – – – l ¢ l 7.25 18.41 
270. ¢ l – l ¢ l 6.95 18.41 
271. ¢ l – l – – 7.10 11.08 
272. ¢ l – l ¢ l 7.40 13.48 
273. – – – l ¢ – 6.90 11.03 
274. – – – l – l 7.50 4.90 
275. – – – l ¢ l 6.90 4.90 
276. – l – – ¢ – 6.25 12.03 
277. – – – l ¢ l 6.25 4.71 
278. ¢ l – l – l 5.60 4.90 
279. – l – l ¢ l 5.45 12.26 
280. – l – – – – 5.30 15.25 
281. – l – – – – 4.64 10.01 
282. – l – – – – 4.28 13.35 



Appendix F: Schema of Global Protein Analysis Information Resource Search Program in Database.
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Appendix G: Emergence of Different Groups of  Proteins in Carrot Petiole Explants after 5 Hours, 7 
Days and 14 Days Cultured in an Auxin-Containing Medium (0.5 ppm 2,4-D). Adapted from Grieb, 1992. 
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Appendix H: Effect o f Different Nitrogen Forms During the Realization of Somatic Embryogenesis in 
Carrot Petiole and Suspension Culture. 
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Table 1. Role and Effect of Different Nitrogen Sources  During the Realization Phase of Somatic Embryogenesis in 
a 63-Day-Old Carrot Petiole Culture (Modified Gamborg B5 without 2,4-D) using 415.6 ppm N as KNO3, 28.4 
ppm N as (NH4)2 SO4  and 32.5 ppm N as  Caseine Hydrolysat (CH: Caseine Hydrolysat, θ: No Nitrogen 
supplemented). 
 
 KNO 3 + 

(NH4)2 
SO 4 + 

CH 

 
_______ 

KNO3  
+ 

(NH4)2 

SO 4 

KNO 3 (NH4)2 
SO 4 

C H KNO 3 
+ 

CH 

(NH4)2 
SO 4  

+ 
CH 

Color Green Brown  Green Green Dirty 
Beige 

Pale 
Green 

Green Dirty 
Beige 

Initial pH of Sol. 5.21 4.95 4.94 4.92 4.92 5.35 5.30 5.38 
Adjusted pH of Sol. 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 
pH of sol. after 63 Days 5.87 3.79 5.94 6.02 3.72 4.35 6.27 4.23 
Globular 189 0 134 39 0 82 84 0 
Heart 88 0 67 24 0 59 110 0 
Torpedo  195 0 56 20 0 27 74 0 
Plantlet 137 0 112 72 0 0 47 0 
 
 
 
 
Table 2. Role and Effect of Different Nitrogen Sources  During the Realization Phase of Somatic Embryogenesis in 
a 42-Day-Old Carrot Cell Suspension Culture (Modified Gamborg B5 without 2,4-D) using 476.5 ppm N as KNO3, 
(NH4)2 SO4  and Caseine Hydrolysat respectively (CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as 
KNO3, 28.4 ppm N as (NH4)2 SO4  and 32.5 ppm N as  Caseine Hydrolysat). 
 
 Control  CH (NH4)2 SO 4 KNO3 
FW g 2.61 3.15 0.41 2.29 
Dry Weight %  5.15 2.22 not determinable 5.04 
Chlorophyll a µg/g 603 200 177 518 
Chlorophyll b µg/g 301 277 161 585 
Ratio a : b 2 : 1 1 : 1.4 1.1 : 1 1 : 1.1 
Chlorophyll a+b µg/g 904 477 338 1103 
Protein µg/g 401 490 not determinable 285 
Osmotic Potential of 
Cell Sap (ml Osmol) 

149 198 not determinable 402 

 
 
 
Table 3. Effect of Different Nitrogen Sources and Concentrations on Growth and pH of Solution During the 
Realization Phase of Somatic Embryogenesis in a 93-Day-Old Carrot Petiole Culture (Modified Gamborg B5 
without 2,4-D) using 176, 276 and 476 ppm N as KNO3, (NH4)2 SO4  and Caseine Hydrolysat (CH: Caseine 
Hydrolysat ). 
 
 CH 

176 
ppm 

CH 
276 
ppm 

CH 
476 
ppm 

(NH4)2 
S O4 176 

 ppm 

(NH4)2 
S O4 276 

 ppm 

(NH4)2 
S O4 476 

 ppm 

KNO3

176 
ppm 

KNO3

276 
ppm 

KNO3

476 
ppm 

FW g 18.1 30.5 32.9 1.2 1.3 1.6 38.1 49.0 56.1 
Initial pH of Sol. 5.9 6.0 6.2 4.8 4.9 4.9 4.9 4.9 4.9 
pH of Sol. after 15 
days 

6.1 6.2 6.3 4.9 4.9 5.0 5.0 5.0 5.0 

pH after 78 days  5.5 6.2 6.2 3.9 3.8 3.9 5.6 5.8 6.2 
Occurrence of SE YES YES YES NO NO NO YES YES YES 
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Table 4. Role and Effect of Different Nitrogen Sources and Concentrations During the Realization Phase of Somatic 
Embryogenesis in a 42-Day-Old Carrot Cell Suspension Culture (Modified Gamborg B5 without 2,4-D) using 176, 
276 and 476 ppm N as KNO3, (NH4)2 SO4  and Caseine Hydrolysat (CH: Caseine Hydrolysat, -: not 
determinable). 
 
 CH 

176 
ppm 

CH 
276 
ppm 

CH 
476 
ppm 

(NH4)2 
S O4 176 

ppm 

(NH4)2 
S O4 276 

ppm 

(NH4)2 
S O4 476 

ppm 

KNO3

176 
ppm 

KNO3

276 
ppm 

KNO3

476 
ppm 

Chlorophyll a µg/g 364 401 823 θ θ θ 234 482 638 
Chlorophyll b µg/g 697 545 1069 θ θ θ 211 477 386 
Ratio a : b 1:1.9 1:1.4 1.3 θ θ θ 1.1:1 1:1 1.6:1 
Chlorophyll a+b µg/g 1061 946 1892 θ θ θ 445 959 1024 
 
 
 
 
 
 
 
 
 
 
Table 5. Effect of Different Concentrations of Organic Nitrogen Sources on Growth  During the Realization Phase 
of Somatic Embryogenesis in a 30-Day-Old Carrot Cell Suspension Culture (Modified Gamborg B5 without 2,4-D) 
using 0, 20, 40, 60, 80 and 100 ppm N as Caseine Hydrolysat (CH: Caseine Hydrolysat). 
 
 0 ppm CH 20 ppm CH 40 ppm CH 60 ppm CH 80 ppm CH 100 ppm CH 
FW g 0.11 0.25 0.39 0.45 0.52 0.69 
DW g 0.01 0.02 0.04 0.05 0.06 0.07 
DW g %  9.09 8.00 10.25 11.11 11.54 10.14 
 
 
 
 
 
 
 
 
 
 
Table 6. Effect of Different Concentrations of Reduced Nitrogen Sources on Development of Somatic Embryos in a 
20-Day-Old Carrot Cell Suspension Culture (Modified Gamborg B5 without 2,4-D) Using Different Concentrations 
of (NH4)2 SO4. 
 
(NH4)2 SO4 1.4 ppm 2.8 ppm 5.6 ppm 14.0 ppm 28.4 ppm 
mM 0.1 0.2 0.4 1 2 
pH of Sol. 4.62 5.00 4.91 4.93 4.92 
PEMs + ++ ++ ++ + 
Globular + ++ + ++ + 
Heart θ + + + θ 
Torpedo θ + + + θ 
Plantlet θ θ θ θ θ 
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Table 7. Nitrogen Dependent Changes in pH Value and Occurrence of Somatic  Embryogenesis Using 
Different Nitrogen Sources  in 12 and 28-Day-Old Carrot Cell Suspension Culture (Modified Gamborg B5 without 
2,4-D) using 476.5 ppm N as KNO3, (NH4)2 SO4  and Caseine Hydrolysat respectively (CH: Caseine Hydrolysat,  
Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 32.5 ppm N as Caseine Hydrolysat). 
 
 Control  CH (NH4)2 SO4 KNO3 
Initial pH 5.47 6.24 4.97 4.93 
pK Value 6.75 7.03 7.18 6.96 
pH after 12 days  5.84 6.34 4.93 4.96 
pH after 28 days  6.14 6.22 3.89 6.18 
Occurrence of SE YES YES NO YES 
 
 
 
 
 
 
 
 
 
 
Table 8. Changes and Effects of pH Value During Induction and Realization of Somatic  Embryogenesis 
in 12, 30 and 43-Day-Old Petiole Culture with Different Initial pH (Modified Gamborg, B5+: with 2,4-D, B5-: 
without 2,4-D) using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 32.5 ppm N as Caseine Hydrolysat. 
 
Initial pH B5

+
 4.5  5.0  5.8 6.5 7.2 

pH after 12 days (B5
+
) 5.55 5.60 5.84 5.99 6.29 

pH after 30 days (B5
-
) 5.89 5.84 6.14 6.42 6.50 

pH after 43 days (B5
-
) 6.15 6.10 6.28 6.45 6.60 

DW %  2.06 5.02 5.15 6.54 4.83 
Occurrence of SE + ++ +++ ++++ +++ 
 
 
 
 
 
 
 
 
Table 9. Changes and Effects of the pH Value During Realization of Somatic  Embryogenesis in 30 and 82-
Day-Old Cell Suspension Culture with Different Initial pH (Modified Gamborg B5 without 2,4-D) using 415.6 
ppm N as KNO 3, 28.4 ppm N as (NH4)2 SO4  and 32.5 ppm N as Caseine Hydrolysat.  
 
Initial pH B5- 4.5  5.0  5.8 6.5 7.2 
pH after 30 days (B5

-
) 7.06 7.03 6.96 6.76 6.83 

pH after 82 days (B5
-
) 7.75 8.13 6.87 7.67 6.78 

PEMs  + ++ +++ ++++ + 
Globular + ++ +++ ++++ + 
Heart θ ++ +++ ++++ + 
Torpedo θ θ +++ ++++ θ 
Plantlet θ θ +++ ++++ θ 
Table 10(a). Effect of pH Value on the Realization of Somatic  Embryogenesis in Cell Suspension Culture 
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after 29 Days Using Different Sources of Nitrogen (476 ppm N) with an Initial pH  of 5.8 (Modified Gamborg B5 
without 2,4-D, CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 
32.5 ppm N as  Caseine Hydrolysat). 
Initial pH B5

-
 (5.8) Control  CH (NH4)2 SO4 KNO3 

PEMs  ++ +++ + ++ 
Globular ++ +++ + ++ 
Heart ++ ++ θ ++ 
Torpedo ++ +++ θ ++ 
Plantlet +++ θ θ +++ 
FW g 6.65 2.44 θ 10.97 
DW %  3.46 12.30 θ 4.28 
 
Table 10(b). Effect of pH Value on the Realization of Somatic  Embryogenesis in Cell Suspension Culture 
after 29 Days Using Different Sources of Nitrogen (476 ppm N) with an Initial pH  of 6.8 (Modified Gamborg B5 
without 2,4-D, CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 
32.5 ppm N as  Caseine Hydrolysat). 
Initial pH B5

-
 (6.8) Control  CH (NH4)2 SO4 KNO3 

PEMs  +++ +++ + ++ 
Globular +++ +++ + ++ 
Heart +++ ++ θ ++ 
Torpedo +++ +++ θ ++ 
Plantlet ++++ θ θ + 
FW g 7.05 2.75 θ 5.91 
DW %  3.97 12.36 θ 6.60 
 
Table 10(c). Effect of pH Value on the Realization of Somatic  Embryogenesis in Cell Suspension Culture 
after 29 Days Using Different Sources of Nitrogen (476 ppm N) with an Initial pH  of 7.2 (Modified Gamborg B5 
without 2,4-D, CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 
32.5 ppm N as  Caseine Hydrolysat). 
Initial pH B5- (7.2) Control  CH (NH4)2 SO4 KNO3 
PEMs  ++ +++ + + 
Globular ++ +++ + + 
Heart ++ +++ θ + 
Torpedo ++ +++ θ + 
Plantlet + θ θ θ 
FW g 3.67 4.02 θ 1.91 
DW %  6.54 8.71 θ 10.99 
 
Table 10(d). Effect of pH Value on the Realization of Somatic  Embryogenesis in Cell Suspension Culture 
after 29 Days Using Different Sources of Nitrogen (476 ppm N) with an Initial pH  of 8.0 (Modified Gamborg B5 
without 2,4-D, CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 
32.5 ppm N as  Caseine Hydrolysat). 
Initial pH B5- (8.0) Control  CH (NH4)2 SO4 KNO3 
PEMs  ++ +++ + + 
Globular ++ +++ + + 
Heart ++ +++ + θ 
Torpedo ++ +++ θ θ 
Plantlet ++ θ θ θ 
FW g 9.22 4.26 0.11 0.66 
DW %  3.25 8.97 (54.54) 8.18 
 



Appendix I: Activity of Inductive, Constitutive, Km Value, Vmax and pH Optimum of Enzyme NR. Soluble 
protein Content, FW and DW of a 35-Day-Old Carrot Cell Suspension Culture During the Realization 

Phase (B5-: without 2,4-D, B5+: with 2,4-D, using 476.5 ppm N as KNO3, (NH4)2 SO4  and Caseine Hydrolysat 
respectively (CH: Caseine Hydrolysat,  Control: Using 415.6 ppm N as KNO3, 28.4 ppm N as (NH4)2 SO4  and 

32.5 ppm N as Caseine Hydrolysat). 
 
 
 B5+ B5- CH KNO3 
Inductive NR U/g FW 16.89 24.85 0.00 28.93 
Constitutive NR U/g FW 0.7353 0.7556 0.6959 0.7360 
Km mMOL 3103 x 10-5 1616 x 10-5 3157 x 10-4 7536 x 10-6 
Vmax U/ml 0.5086 0.4437 0.5738 0.3139 
Nitrate Consumed ppm/tube 88.67 186.18 θ 247.14 
Soluble Protein µg/g FW 401.72 395.25 490.29 285.84 
pH Optimum 6.5 6.5 6.5 6.5 
FW g/tube 4.78 20.40 3.18 7.81 
DW g/tube 0.41 0.98 0.50 0.54 
DW %  8.57 4.80 15.72 6.91 
 
 
 
 
 
 
 
 

Inductive and Constitutive NR Activity, Vmax, Soluble Protein Content and Nitrate 
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Fig.1 Effect of different pH and nitrogen forms during the realization phase of carrot culture (B5-). Under 
pH of 5.8 (1), 6.8 (2) and 7.2 (3), using only KNO3 (A1-A3), (NH 4)2 SO 4 (B1-B3), casein hydrolysate (C1-
C3) and control (D1-D3). 
 
 
 
 
 

 
Fig. 2 Effect of different pH (from left to right 5.8, 6.8, 7.2 and 8.0) using 476 ppm  N as (NH4)2 SO4 
(33.52 mM) as only source of nitrogen on the realization phase of carrot somatic embryogenesis (B5-). 
 
 
 
 

A 

B 

C 

D 

1 2 3 



Appendix J: Effect of Different Nitrogen Forms and pH During the Realization Phase of Somatic 
Embryogenesis in Carrot. 
 

II 

 

 
 

 
 
Fig. 3 With neutral red stained carrot suspension culture (B5-) using 476.5 ppm N (33.52 mM)  as (NH4)2 
SO4  as only source of nitrogen. Despite stoppage of embryogenesis some cells (dark cells) are still division 
active and vital showing tetraoidal stage and an unequal cell division, which is important for the 
development of the suspensor (arrow). 
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Fig. 1 Twenty one days old carrot petiole culture supplemented (from left to right) with 176, 276 and 476 
ppm N as casein hydrolysate (A), (NH4)2 SO4 (B) and KNO3 (C) as only source of nitrogen (B5-). 
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Fig. 2 Carrot petiole culture during the realization phase (B5-), supplemented with casein hydrolysate as 
only source of nitrogen. The growing meristems, mostly globular, have ruptured the petiole epidermis. 
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Fig. 3 Section of a rhizogenous meristem (upper left) showing a disarranged aggregate of cells near vascular 
bundles and globular form (upper right) (A). Section of embryogenic meristem with small cells and large 
nucleus (B). Section of globular stage showing circular arrangements of cells with large nucleus, surrounded 
by cytoplasm rich cells (C). Stained with eosin-fast green dye. 
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Fig. 4 Effect of nitrogen forms (from left to right, CH, (NH4)2 SO4 and KNO3) and concentrations (from 
top to buttom, 476, 276 and 176 ppm) on the realization of carrot somatic embryogenesis.   
 



Appendix K: Different Nitrogen Concentrations and Forms During the Realization Phase of Somatic 
Embryogenesis in Carrot Culture.  
 

V

 

 
Fig. 5. Effect of nitrogen forms on the realization stage of carrot somatic embryogenesis. From left to right, 
control, CH, (NH4)2 SO4 and KNO3. 
 
 

 
Fig. 6 Realization of somatic embryogenesis leading to formation of mature embryo and plantlet using 476 
ppm KNO3 as only source of nitrogen. 



Appendix L: Pattern of Somatic Embryogenesis using 476 ppm Casein Hydrolysate as Only Source of 
Nitrogen Form During Realization phase of Carrot Cell Suspension Culture.  
 

I

 

 
Fig. 1 Realization phase of carrot somatic embryogenesis using 476 ppm casein hydrolysate as only source 
of nitrogen. Culture proceeds only up to late torpedo stage (115 days in an auxin-free medium). 
 

 
Fig. 2 Torpedoes formed during realization phase of carrot somatic embryogenesis using casein hydrolysate 
as only source of nitrogen (115 days in an auxin-free medium). 
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Fig. 3 With the application of KNO3 to the culture containing dormant torpedoes (left), torpedoes begin to 
develop further after five days and give rise to plantlets (right). 
 
 
 
 

Fig. 4 Plantlets formed five days after application of KNO3 to carrot culture which previously was treated 
with casein hydrolisate as only source of nitrogen. 
 



Appendix L: Pattern of Somatic Embryogenesis using 476 ppm Casein Hydrolysate as Only Source of 
Nitrogen Form During Realization phase of Carrot Cell Suspension Culture.  
 

III 

 
 
 
 
 
 
 

 
Fig. 5 Young plants grown from a carrot cu lture which during the realization phase was supplemented with 
casein hydrolysate as only source of nitrogen (115 days in B5-), later treated for five days with KNO3 to 
break the torpedo dormancy and finally transferred to agar (10 days on agar). 
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SWISS-2DPAGE RELEASE 11.0  

24 November 1999  
 

SWISS-2DPAGE 
SWISS-2DPAGE is an annotated two-dimensional polyacrylamide gel electrophoresis (2-D 
PAGE) database established in 1993 and maintained collaboratively by the Central Clinical 
Chemistry Laboratory of the Geneva University Hospital and the Swiss Institute of 
Bioinformatics (SIB).  

The SWISS-2DPAGE database assembles data on proteins identified on 
various 2-D PAGE maps. Each SWISS-2DPAGE entry contains textual data on 
one protein, including mapping procedures, physiological and pathological 
information, experimental data (isoelectric point, molecular weight, amino 
acid composition) and bibliographical references. In addition to this textual 
data, SWISS-2DPAGE provides several 2-D PAGE images showing the 
experimentally determined location of the protein, as well as a theoretical 
region computed from the sequence protein, indicating where the protein might 
be found in the gel.  
Cross-references are provided to Medline and other federated 2-DE databases 
(ECO2DBASE, HSC-2DPAGE, PHCI-2DPAGE, SIENA-2DPAGE, YEPD) and 
to SWISS-PROT, which provides many links to other molecular databases 
(EMBL, Genbank, PROSITE, OMIM, etc).  

The protein entries in SWISS-2DPAGE are text files structured in a format 
similar to the one used in SWISS-PROT (for details see user manual).  

For detailed information specific to the current SWISS-2DPAGE release, see 
the release notes.  
 
 
    Amos Bairoch 
    Swiss Institute of Bioinformatics (SIB) 
    Centre Medical Universitaire 
    1, rue Michel Servet 
    1211 Geneva 4 
    Switzerland 
    Telephone: +41-22-702 54 77 
    Fax: +41-22-702 55 02 
    Electronic mail address: bairoch@medecine.unige.ch 
    WWW server: http://www.expasy.ch/ 
 
   Rolf Apweiler 

The EMBL Outstation - The European Bioinformatics              
Institute(EBI) 

   Wellcome Trust Genome Campus 
   Hinxton 
   Cambridge CB10 1SD 
   United Kingdom 
   Telephone: +44-1223-494 444 



Appendix M: Expasy Server / SWISS-PROT / SWISS-2DPAGE Home Page  
 

II 

    Fax: +44-1223-494 468 
    Electronic mail address: datalib@ebi.ac.uk 
    WWW server: http://www.ebi.ac.uk/ 
 
 
SWISS-PROT contains sequences translated from the EMBL 
Nucleotide Sequence Database, prepared by the European 
Bioinformatics Institute. For a  recent reference  see:  
Stoesser G., Tuli M.A., Lopez R. and  Sterk  P.;  Nucleic Acids 
Res. 27:18-24(1999). 
 
A  small part of the information in SWISS-PROT was originally 
adapted from information  contained  in the Protein Sequence 
Database  of  the  Protein Information Resource (PIR) supported 
by the Division of Research Resources of the NIH, National 
Biomedical Research Foundation, Georgetown University Medical 
Center, 3900 Reservoir road, N.W., Washington, D.C. 20007,  
U.S.A. 
For  a  recent reference see: Barker W.C., Garavelli J.S., 
McGarvey  P.B., 
Marzec C.R., Orcutt B.C., Srinivasarao G.Y., Yeh L.S.L, Ledley 
R.S., Mewes H.-W.,  Pfeiffer  F.,  Tsugita A. and Wu C.;  
Nucleic  Acids  Res.  27:39-43(1999). 
 
 
 
COPYRIGHT NOTICE 
 
SWISS-PROT  is  copyright. It is produced through a 
collaboration  between the  Swiss  Institute  of Bioinformatics 
and the  EMBL  Outstation  -  the European Bioinformatics 
Institute. There are no restrictions on its use by non-profit  
institutions as long as its content is  in  no  way  modified. 
Usage  by  and  for commercial entities requires a license 
agreement.  For information    about    the   licensing   
scheme   see:    http://www.isb-sib.ch/announce/ or send an 
email to license@isb-sib.ch. 
The above copyright notice also applies to this user manual as 
well as  to any other SWISS-PROT documents. 
 
HOW TO SUBMIT DATA OR UPDATES/CORRECTIONS TO SWISS-PROT 
 
To  submit  new sequence data to SWISS-PROT and for all queries  
regarding the submission of SWISS-PROT one should contact: 
 
     SWISS-PROT 
     The EMBL Outstation - The European Bioinformatics 
Institute 
     Wellcome Trust Genome Campus 
     Hinxton 
     Cambridge CB10 1SD 
     United Kingdom 
 
     Telephone:     (+44 1223) 494 462 
     Telefax:       (+44 1223) 494 468 
     E-mail:  datasubs@ebi.ac.uk (for submission); 
              datalib@ebi.ac.uk  (for enquiries) 
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To  submit updates and/or corrections to SWISS-PROT you can 
either use the E-mail address: swiss-prot@expasy.ch or the WWW 
address: 
 
              http://www.expasy.ch/sprot/sp_update_form.html 
 
 
 
CITATION 
 
If  you want to cite SWISS-PROT in a publication, please use 
the following 
reference: 
 
Bairoch A. and Apweiler R. 
The  SWISS-PROT protein sequence data bank and its supplement  
TrEMBL in 1999. 
Nucleic Acids Res. 27:49-54(1999). 
 
--------------------------------------------------------------- 
                              
1) What is SWISS-PROT? 
 
2) Conventions used in the database 
 
     2.1 General structure of the database 
     2.2 Classes of data 
     2.3 Structure of a sequence entry 
 
3) The different line types 
 
     3.1 The ID line 
     3.2 The AC line 
     3.3 The DT line 
     3.4 The DE line 
     3.5 The GN line 
     3.6 The OS line 
     3.7 The OG line 
     3.8 The OC line 
     3.9 The reference (RN, RP, RC, RX, RA, RT, RL) lines 
     3.10 The CC line 
     3.11 The DR line 
     3.12 The KW line 
     3.13 The FT line 
     3.14 The SQ line 
     3.15 The sequence data line 
     3.16 The // line 
 
 
(1). WHAT IS SWISS-PROT? 
 
SWISS-PROT  is an annotated protein sequence database. It was  
established in  1986 and maintained collaboratively, since 
1987, by the group of  Amos Bairoch  first at the Department of 
Medical Biochemistry of the University of  Geneva and now at 
the Swiss Institute of Bioinformatics (SIB) and  the EMBL  Data  
Library (now the EMBL Outstation - The European Bioinformatics 
Institute  (EBI)).  The SWISS-PROT protein sequence database  
consists  of sequence  entries. Sequence entries are composed 
of different line  types, each  with  their own format. For 
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standardization purposes the  format  of SWISS-PROT  follows  
as closely as possible that of  the  EMBL  Nucleotide Sequence 
Database. 
 
The  SWISS-PROT database distinguishes itself from other 
protein  sequence databases by four distinct criteria: 
 
     a) Annotation 
 
In  SWISS-PROT, as in most other sequence databases, two 
classes  of  data can be distinguished: the core data and the 
annotation. 
 
For each sequence entry the core data consists of: 
 
   o The sequence data; 
   o The citation information (bibliographical references); 
   o The taxonomic data (description of the biological source 
of the protein). 
 
The annotation consists of the description of the following 
items: 
 
   o Function(s) of the protein; 
   o Post-translational modification(s). For example 
carbohydrates, 
     phosphorylation, acetylation, GPI-anchor, etc.; 
   o Domains and sites. For example calcium binding regions, 
ATP-binding      sites, zinc fingers, homeoboxes, SH2 and SH3 
domains, kringle, etc.; 
   o Secondary structure. For example alpha helix, beta sheet, 
etc.; 
   o Quaternary structure. For example homodimer, heterotrimer, 
etc.; 
   o Similarities to other proteins; 
   o Disease(s) associated with deficiencie(s) in the protein; 
   o Sequence conflicts, variants, etc. 
 
We  try  to  include as much annotation information as possible 
in  SWISS-PROT.  To  obtain this information we use, in 
addition to the publications that report new sequence data, 
review articles to periodically update  the annotations  of  
families  or groups of proteins.  We  also  make  use  of 
external  experts, who have been recruited to send us their  
comments  and updates concerning specific groups of proteins. 
 
We  believe that our having systematic recourse both to 
publications other than  those  reporting the core data and to 
subject referees represents  a unique and beneficial feature of 
SWISS-PROT. 
 
In  SWISS-PROT, annotation is mainly found in the comment lines  
(CC),  in the  feature  table (FT) and in the keyword lines 
(KW). Most comments  are classified  by  'topics';  this 
approach permits  the  easy  retrieval  of specific categories 
of data from the database. 
 
     b) Minimal redundancy 
 



Appendix M: Expasy Server / SWISS-PROT / SWISS-2DPAGE Home Page  
 

V 

Many  sequence  databases contain, for a given protein 
sequence,  separate entries which correspond to different 
literature reports. In SWISS-PROT we try  as  much  as possible 
to merge all these data so as to  minimize  the redundancy  of 
the database. If conflicts exist between various sequencing 
reports,  they  are  indicated in the feature table of  the  
corresponding entry. 
 
     c) Integration with other databases 
 
It  is  important  to provide the users of biomolecular 
databases  with  a degree   of  integration  between  the  
three  types  of  sequence-related atabases (nucleic acid 
sequences, protein sequences and protein  tertiary structures)  
as well as with specialized data collections.  SWISS-PROT  is 
currently  cross-referenced  with about  30  different  
databases.  Cross- 
references are provided in the form of pointers to information 
related  to SWISS-PROT  entries and found in data collections 
other  than  SWISS-PROT. 
This  extensive network of cross-references allows SWISS-PROT  
to  play  a major role as a focal point of biomolecular 
database interconnectivity. 
 
     d) Documentation 
 
SWISS-PROT  is  distributed  with  a  large  number  of  index  
files  and specialized  documentation files. Some of these 
files have been  available for  a long time (this user manual, 
the release notes, the various indices for  authors,  
citations,  keywords, etc.), but  many  have  been  created 
recently  and  we  are continuously adding new files.  The  
release  notes contain an up to date descriptive list of all 
distributed document files. 
 
 
 
(2). CONVENTIONS USED IN THE DATABASE 
 
The following sections describe the general conventions used in 
SWISS-PROT to  achieve  uniformity of presentation. Experienced  
users  of  the  EMBL Database  can skip these sections and 
directly refer to Appendix C,  which lists the minor 
differences in format between the two data collections. 
 
 
(2.1). General structure of the database 
 
The  SWISS-PROT protein sequence database is composed of 
sequence entries. Each  entry corresponds to a single 
contiguous sequence as contributed  to the  bank or reported in 
the literature. In some cases, entries have  been assembled  
from  several papers that report overlapping sequence  regions. 
Conversely, a single paper can provide data for several 
entries, e.g. when related sequences from different organisms 
are reported. 
 
References  to  positions  within a sequence  are  made  using  
sequential numbering, beginning with 1 at the N-terminal end of 
the sequence. 
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Except  for  initiator  N-terminal  methionine  residues,  
which  are  not included  in  a sequence when their absence 
from the mature  sequence  has been  proven,  the  sequence 
data correspond to the precursor  form  of  a protein before 
post-translational modifications and processing. 
 
 
(2.2). Classes of data 
 
In order to attempt to make data available to users as quickly 
as possible after  publication, SWISS-PROT is now distributed 
with a supplement called TrEMBL, where entries are released 
before all their details are finalized. To  distinguish between 
fully annotated entries and those in  TrEMBL,  the 'class'  of  
each entry is indicated on the first (ID) line of the  entry. 
The two defined classes are: 
 
STANDARD        Data  which are complete to the standards laid 
down  by the SWISS-PROT database. 
 
PRELIMINARY     Sequence  entries which have not yet been 
annotated  by the  SWISS-PROT staff up to the standards laid 
down  by                 SWISS-PROT. These entries are 
exclusively found in TrEMBL. 
 
(2.3). Structure of a sequence entry 
 
The  entries in the SWISS-PROT database are structured so as to 
be  usable by  human  readers  as  well  as by computer 
programs.  The  explanations, descriptions, classifications and 
other comments are in ordinary  English. 
Wherever  possible, symbols familiar to biochemists, protein 
chemists  and molecular biologists are used. 
 
Each  sequence entry is composed of lines. Different types of 
lines,  each with  their own format, are used to record the 
various data that  make  up the entry. A sample sequence entry 
is shown below. 
 
 
ID   GRAA_HUMAN     STANDARD;      PRT;   262 AA. 
AC   P12544; 
DT   01-OCT-1989 (Rel. 12, Created) 
DT   01-OCT-1989 (Rel. 12, Last sequence update) 
DT   15-DEC-1998 (Rel. 37, Last annotation update) 
DE   GRANZYME A PRECURSOR (EC 3.4.21.78) (CYTOTOXIC T-
LYMPHOCYTE PROTEINASE 
DE   1) (HANUKKAH FACTOR) (H FACTOR) (HF) (GRANZYME 1) (CTL 
TRYPTASE) 
DE   (FRAGMENTIN 1). 
GN   GZMA OR CTLA3 OR HFSP. 
OS   Homo sapiens (Human). 
OC   Eukaryota; Metazoa; Chordata; Vertebrata; Mammalia; 
Eutheria; 
OC   Primates; Catarrhini; Hominidae; Homo. 
RN   [1] 
RP   SEQUENCE FROM N.A. 
RC   TISSUE=T-CELL; 
RX   MEDLINE; 88125000. 
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RA   GERSHENFELD H.K., HERSHBERGER R.J., SHOWS T.B., WEISSMAN 
I.L.; 
RT   "Cloning and chromosomal assignment of a human cDNA 
encoding a T 
RT   cell- and natural killer cell-specific trypsin-like serine 
RT   protease."; 
RL   Proc. Natl. Acad. Sci. U.S.A. 85:1184-1188(1988). 
RN   [2] 
RP   SEQUENCE OF 29-53. 
RX   MEDLINE; 88330824. 
RA   POE M., BENNETT C.D., BIDDISON W.E., BLAKE J.T., NORTON 
G.P., 
RA   RODKEY J.A., SIGAL N.H., TURNER R.V., WU J.K., ZWEERINK 
H.J.; 
RT   "Human cytotoxic lymphocyte tryptase. Its purification 
from granules 
RT   and the characterization of inhibitor and substrate 
specificity."; 
RL   J. Biol. Chem. 263:13215-13222(1988). 
RN   [3] 
RP   SEQUENCE OF 29-40, AND CHARACTERIZATION. 
RX   MEDLINE; 89009866. 
RA   HAMEED A., LOWREY D.M., LICHTENHELD M., PODACK E.R.; 
RT   "Characterization of three serine esterases isolated from 
human IL-2 
RT   activated killer cells."; 
RL   J. Immunol. 141:3142-3147(1988). 
RN   [4] 
RP   SEQUENCE OF 29-39, AND CHARACTERIZATION. 
RX   MEDLINE; 89035468. 
RA   KRAEHENBUHL O., REY C., JENNE D.E., LANZAVECCHIA A., 
GROSCURTH P., 
RA   CARREL S., TSCHOPP J.; 
RT   "Characterization of granzymes A and B isolated from 
granules of 
RT   cloned human cytotoxic T lymphocytes."; 
RL   J. Immunol. 141:3471-3477(1988). 
RN   [5] 
RP   3D-STRUCTURE MODELING. 
RX   MEDLINE; 89184501. 
RA   MURPHY M.E.P., MOULT J., BLEACKLEY R.C., GERSHENFELD H., 
RA   WEISSMAN I.L., JAMES M.N.G.; 
RT   "Comparative molecular model building of two serine 
proteinases from 
RT   cytotoxic T lymphocytes."; 
RL   Proteins 4:190-204(1988). 
CC   -!- FUNCTION: THIS ENZYME IS NECESSARY FOR TARGET CELL 
LYSIS IN CELL- 
CC       MEDIATED IMMUNE RESPONSES. IT CLEAVES AFTER LYS OR 
ARG. MAY BE 
CC       INVOLVED IN APOPTOSIS. 
CC   -!- CATALYTIC ACTIVITY: HYDROLYSIS OF PROTEINS, INCLUDING 
FIBRONECTIN, 
CC       TYPE IV COLLAGEN AND NUCLEOLIN. PREFERENTIAL CLEAVAGE: 
ARG-|-XAA, 
CC       LYS-|-XAA >> PHE-|-XAA IN SMALL MOLECULE SUBSTRATES. 
CC   -!- SUBUNIT: HOMODIMER, DISULFIDE-LINKED. 
CC   -!- SUBCELLULAR LOCATION: CYTOPLASMIC GRANULES. 
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CC   -!- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1; ALSO KNOWN 
CC   -!- AS THE TRYPSIN FAMILY. STRONGEST TO OTHER GRANZYMES  
CC   -!- AND TO MAST CELL PROTEASES. 
CC   -!- ------------------------------------------------------ 
CC   This SWISS-PROT entry is copyright. It is produced through 
CC   a collaboration between  the Swiss Institute of   
CC   Bioinformatics  and the  EMBL outstation - the European  
CC   Bioinformatics Institute.  There are no  restrictions on  
CC   its use  by  non-profit  institutions as long  as its  
CC   content  is  in  no  way modified and this statement is    
CC   not removed.  Usage  by  and for commercial entities CC   
CC   requires a license agreement  
CC   (See http://www.isb-sib.ch/announce/  
CC   or send an email to license@isb-sib.ch). 
CC   ---------------------------------------------------------- 
DR   EMBL; M18737; AAA52647.1; -. 
DR   PIR; A28943; A28943. 
DR   PIR; A30525; A30525. 
DR   PIR; A30526; A30526. 
DR   PIR; A31372; A31372. 
DR   PDB; 1HF1; 15-OCT-94. 
DR   MIM; 140050; -. 
DR   PROSITE; PS00134; TRYPSIN_HIS; 1. 
DR   PROSITE; PS00135; TRYPSIN_SER; 1. 
DR   PFAM; PF00089; trypsin; 1. 
KW   Hydrolase; Serine protease; Zymogen; Signal; T-cell; 
Cytolysis; 
KW   Apoptosis; 3D-structure. 
FT   SIGNAL        1     26 
FT   PROPEP       27     28       ACTIVATION PEPTIDE. 
FT   CHAIN        29    262       GRANZYME A. 
FT   ACT_SITE     69     69       CHARGE RELAY SYSTEM (BY 
SIMILARITY). 
FT   ACT_SITE    114    114       CHARGE RELAY SYSTEM (BY 
SIMILARITY). 
FT   ACT_SITE    212    212       CHARGE RELAY SYSTEM (BY 
SIMILARITY). 
FT   DISULFID     54     70       BY SIMILARITY. 
FT   DISULFID    148    218       BY SIMILARITY. 
FT   DISULFID    179    197       BY SIMILARITY. 
FT   DISULFID    208    234       BY SIMILARITY. 
FT   CARBOHYD    170    170       POTENTIAL. 
SQ   SEQUENCE   262 AA;  28968 MW;  34E965D7 CRC32; 
     MRNSYRFLAS SLSVVVSLLL IPEDVCEKII GGNEVTPHSR PYMVLLSLDR 
KTICAGALIA 
     KDWVLTAAHC NLNKRSQVIL GAHSITREEP TKQIMLVKKE FPYPCYDPAT 
REGDLKLLQL 
     TEKAKINKYV TILHLPKKGD DVKPGTMCQV AGWGRTHNSA SWSDTLREVN 
ITIIDRKVCN 
     DRNHYNFNPV IGMNMVCAGS LRGGRDSCNG DSGSPLLCEG VFRGVTSFGL 
ENKCGDPRGP 
     GVYILLSKKH LNWIIMTIKG AV 
// 
 
Each  line begins with a two-character line code, which 
indicates the type of  data contained in the line. The current 
line types and line codes  and the order in which they appear 
in an entry, are shown in the table below. 
 
 



Appendix M: Expasy Server / SWISS-PROT / SWISS-2DPAGE Home Page  
 

IX 

---------  ----------------------------    -------------------- 
Line code  Content                         Occurrence in an 
entry 
---------  ----------------------------    -------------------- 
ID         Identification                  Once; starts the 
entry 
AC         Accession number(s)             One or more 
DT         Date                            Three times 
DE         Description                     One or more 
GN         Gene name(s)                    Optional 
OS         Organism species                One or more 
OG         Organelle                       Optional 
OC         Organism classification         One or more 
RN         Reference number                One or more 
RP         Reference position              One or more 
RC         Reference comment(s)            Optional 
RX         Reference cross-reference(s)    Optional 
RA         Reference authors               One or more 
RT         Reference title                 Optional 
RL         Reference location              One or more 
CC         Comments or notes               Optional 
DR         Database cross-references       Optional 
KW         Keywords                        Optional 
FT         Feature table data              Optional 
SQ         Sequence header                 Once 
           (blanks) sequence data          One or more 
//         Termination line                Once; ends the entry 
---------  ----------------------------    -------------------- 
 
As  shown  in  the above table, some line types are found in 
all  entries, others  are optional. Some line types occur many 
times in a single  entry. 
Each  entry  must begin with an identification line (ID) and  
end  with a terminator line (//). 
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